
117

LIGHTWEIGHT APPROACH OF XML IMPLEMENTATION AS
INDUSTRIAL STANDARD FOR INFORMATION SHARING

ERWIN WIDODO
Industrial	Engineering	Department,	Sepuluh	Nopember	Institute	of	Technology,	ITS,	Surabaya.
Kampus	ITS	Sukolilo	Surabaya	60111
erwin@ie.its.ac.id	

ABSTRACT

Information sharing in supply chain has emerged as one critical factor in maintaining company's responssiveness.
This ability is needed to overcome both the supplier and customer requirements in sharing their data to accomplish
their operational routines. A lot of efforts have been devoted in such research area including XML (eXtensible Markup
Language) technology. However, a stepwise approach on how to utilize this advance technology is still lacking. This paper
proposed a lightweight approach to implement XML in information sharing firmly. The main XML characteristics will
be exploited so that the advantages of utilizing this mark up language may be highlighted. Based on these important
remarks a lightweight approach of implementing XML is possible to be composed. The expected outcome is a step-by-step
guidance for data exchanger to utilize XML simply but precisely and accurately. A case study of information sharing in
commerce is elaborated to enhance our understanding on how to implement this approach in real domain problem.

Key words: XML, information sharing

INTRODUCTION

The	usage	of	information	in	companies'	decision	
making	 is	 definitely	 important	 in	 current	 global	
environment.	The	demand	of	fast,	interchangeable,	
and	reliable	information	is	rapidly	increasing.	From	
supply	chain	point	of	view,	a	company	needs	to	have	
an	 access	 to	 its	 customer	 demand	 information	 in	
preparing	its	own	production	or	service	output.	On	
the	other	hand,	it	is	also	important	for	this	company	
to	 discern	 its	 supplier	 information	 in	 providing	
the	 required	 inputs.	 XML	 (eXtensible	 Markup	
Language),	one	type	of	markup	language,	becomes	
one	feasible	solution	to	answer	this	challenge.

Basically	XML	is	one	subset	of	SGML	(Standard	
General	 Markup	 Language).	 This	 markup	
language	was	proposed	by	W3C	(World	Wide	Web	
Consortium)	in	February	1998.	Its	primary	purpose	
is	 to	 facilitate	 the	 data	 sharing	 across	 different	
information	 systems,	 particularly	 among	 several	
systems	connected	via	internet.	XML	provides	a	text-
based	mean	to	describe	and	apply	a	tree	structure	
of	 represented	 information.	 At	 its	 base	 level,	 all	

information	 is	 manifested	 as	 text,	 equipped	 with	
markup	that	indicates	the	information's	separation	
into	 a	 hierarchy	 of	 container-like	 elements	
altogether	 with	 attributes	 and	 character	 data	 of	
those	elements.	Figure	1	below	shows	a	example	of	
truncated	XML	document	in	commerce	area.	There	
is	a	set	of	order	information	which	includes	two	(2)	
different	 items	 ordered	 accompanied	 with	 their	
details,	namely	item	ID,	quantity,	and	price.

Regarding	 its	 characteristics,	 there	 are	 a	
number	 of	 XML	 main	 advantages,	 such	 as:	 It	 is	
platform-independent,	 thus	 relatively	 immune	 to	
changes	 in	 technology;	 Its	 format	 which	 is	 based	
on	 international	 standards,	 human	 and	 machine	
readable;	 It	 has	 support	 for	 Unicode,	 allowing	
almost	 any	 information	 to	 be	 communicated;	 It	
has	ability	to	represent	the	most	general	computer	
science	 data	 structures:	 records,	 lists	 and	 trees;	
User	 may	 perform	 self-documenting	 format	 that	
describes	user-own	structure	and	field	names;	XML	
document	can	be	parsed	by	using	 its	structure	to	
process	the	data.

118	 	Jurnal Teknik Industri, Vol. 8, No. 2, Agustus 2007: 117–125

Figure 1. E x a m p l e 	 o f 	 a 	 s i m p l i f i e d 	 X M L	
representation

Besides	 those	 strong	 points,	 this	 markup	
language	 is	 also	 preferable	 because	 of	 some	
supporting	reasons	such	as	plain	text	manifestation	
and	extensive	 experience	 inherited	 from	previous	
markup	 language.	 Having	 realized	 the	 merits	
of	 XML,	 data	 exchange	 operators	 have	 a	 very	
promising	solution	in	overcoming	the	main	hurdle	
in	 data	 exchange	 operations	 among	 supply	 chain	
echelons.

Most	 companies	 store	 their	 data	 and	
information	 in	 various	 format,	 including	 paper	
documents,	 electronic	 documents,	 spreadsheets,	
and	 relational	 databases	 This	 situation	 leads	 for	
interoperability	problem	when	they	want	to	manage	
their	information	sharing.	Therefore,	by	utilizing	a	
common	information	sharing	format	the	individual	
industrial	 partners	 do	 not	 need	 to	 invest	 heavily	
in	 new	 and	 interoperable	 computer	 systems	 or	
databases.	They	just	need	to	format	information	in	
a	common	structure.	In	this	case,	XML	is	definitely	
the	proper	solution.	Moreover,	this	solution	is	also	
becoming	easier	as	most	used	word	processors	and	
spreadsheet	 programs	 allow	 for	 the	 creation	 of	
XML	documents.

The	usage	of	XML	will	become	more	effective	
in	 cross-industrial	 border	 information	 sharing	
when	 a	 step	 wise	 approach	 is	 available.	 A	 lot	 of	
researches	have	been	done	about	XML,	nonetheless,	
there	is	still	lack	on	providing	a	set	of	step	by	step	
operational	 guidance	 how	 to	 gain	 the	 merits	 of	

this	 beneficial	 document	 in	 information	 sharing.	
Based	on	this	problem,	this	paper	tries	to	provide	a	
bridging	result	between	XML	strong	points	and	the	
favorable	XML	operational	 routines	by	proposing	
a	lightweight	approach	in	XML	implementation	as	
an	industrial	standard	for	information	sharing.

The	rest	of	this	paper	is	organized	as	follows:	
Figure	 2	 describes	 the	 XML	 characteristics	 by	
which	 become	 the	 underlying	 justification	 to	
compose	the	aimed	approach.	Figure	3	elaborates	
the	 main	 section	 of	 this	 paper,	 the	 lightweight	
approach.	There	exists	some	step-by-step	guidance	
for	information	sharing	routines.	Afterwards,	a	case	
study	of	XIS,	XML-based Information Sharing	 in	
commerce	area	is	presented	in	figure	4.	This	section	
is	 prepared	 to	 enhance	 reader's	 understanding	
about	 the	 proposed	 approach.	 As	 usual,	 the	 next	
part,	figure	5,	sums	up	some	important	remarks	of	
this	 research.	 Finally,	 a	 short	 reference	 of	 future	
work	as	a	further	expansion	of	this	research	ends	
this	paper.

XML	 possesses	 some	 specific	 characteristics	
which	 makes	 this	 format	 is	 very	 useful	 in	
information	 sharing.	 In	 this	 section,	 there	 is	
a	 brief	 review	 of	 them	 in	 each	 associated	 sub-
sections.	 Regardless	 the	 type	 of	 business,	 either	
B2B	 (business	 to	 business)	 or	 B2C	 (business	 to	
customer),	these	characteristics	are	very	beneficial	
in	 performing	 information	 sharing	 among	 supply	
chain	players.	

Compare	 to	 HTML,	 XML	 provides	 a	 "user-
defined	tagging"	system	in	marking	up	their	data	
with	 appropriate	 tag	 characters.	 By	 using	 XML,	
information	 operators	 are	 free	 to	 determine	
the	 root	 element	 tag,	 element	 tag,	 sub-element	
tag,	 sub-sub-element	 tag,	 and	 so	 on.	 When	 the	
attributes	 are	 necessary,	 users	 also	 have	 freedom	
to	concatenate	those	attributes	tag	with	associated	
element	tag	(c.f.	section,	advantage	of	XML	no.	5).	
Contrarily,	when	data	operators	have	to	deal	with	
the	previous	version	of	markup	language,	HTML,	
they	 have	 to	 stay	 focus	 in	 creating,	 processing,	
displaying,	and	maintaining	a	mixture	of	data	and	
its	 structure	 in	 a	 single	 document	 in	 addition	 to	
inflexible	 vocabulary	 of	 elements	 and	 attributes.	
The	Basic	syntax	of	XML	is:

<name	attribute="value">content</name>

Widodo: Lightweight Approach of XML Implementation	 119

Name	 refers	 to	 the	 tag	 name	 for	 element	
under	consideration.	Tag	name	for	one	particular	
non-empty	 element	 always	 has	 start	 tag	 name	
surrounded	by	angle	brackets	(<name>)	and	end	
tag	name	also	surrounded	by	angle	brackets	with	
slash	preceding	the	name	(</name>).	Attribute	is	
a	specific	value	for	an	element	included	in	the	start	
tag.	 An	 attribute	 value	 should	 be	 quoted	 using	
single	or	double	quotes.	One	attribute	name	only	
appears	once	in	any	elements.	Content	is	the	main	
data	for	element	under	consideration.	Everything	
written	between	 start	 and	end	 tag	 is	 the	 content	
of	element	under	consideration.	Users	are	 free	to	
give	names	of	these	name	and	attributes,	unlike	in	
HTML	which	 is	very	 strict	 to	 the	 rules	of	SGML	
and	EBNF	(Extended	Backus-Naur	Form).	

Even	 XML	 users	 have	 sufficient	 freedom	 to	
construct	 their	 documents,	 there	 are	 still	 two	
restraining	 rules	 to	 be	 followed.	 The	 first	 one	 is	
known	as	 "well	 formedness."	This	 rule	 is	 fulfilled	
when	 all	 of	 document	 contents	 conform	 to	 all	 of	
XML's	syntax	rules.	A	document	that	 is	not	well-
formed	 is	 not	 considered	 to	 be	 XML;	 a	 parser,	
an	 analyzer	 of	 XML	 document,	 is	 not	 allowed	 to	
process	 it.	 For	 example,	 if	 a	 non-empty	 element	
has	an	opening	tag	with	no	closing	tag,	this	XML	
document	is	not	well-formed.

Second	 rule	 in	 constructing	 XML	 documents	
is	"validity."	A	valid	XML	document	has	data	that	
conforms	to	a	particular	set	of	"user-defined	content	
rules."	 These	 rules	 are	 commonly	 represented	 by	
Schemas.	An	XML	Schema	is	a	description	of	a	type	
of	 XML	 document,	 typically	 expressed	 in	 terms	
of	 constraints	 on	 the	 structure	 and	 content	 of	
documents	of	that	type,	above	and	beyond	the	basic	
constraints	 imposed	 by	 XML	 itself.	 A	 number	 of	
standard	and	proprietary	XML	schema	languages	
have	emerged	for	the	purpose	of	formally	expressing	
such	 Schemas,	 and	 some	 of	 these	 languages	 are	
XML-based,	themselves.

For	 example,	 if	 an	 element	 in	 one	 particular	
branch	 of	 a	 document	 tree	 structure	 is	 required	
to	contain	text	that	can	be	interpreted	as	being	an	
integer	numeric	value,	and	it	instead	has	the	text	
"hello",	or	has	other	elements,	then	the	document	is	
considered	as	not	valid.

In	performing	such	validity,	user	have	to	parse	
the	input	XML	document	altogether	with	the	casting	
DTD	file,	the	oldest	Schema	format	for	XML,	into	

a	specific	validating	system.	The	main	component	
of	this	system	is	XML	parser.	There	is	a	number	of	
XML	parser	available	freely,	however,	Xerces	seems	
to	be	the	most	 famous	one.	Figure	2	reflects	how	
DTD	works	towards	validating	process.

<?xml version=”1.0" encoding=”UTF-8"?>
<root element>pcdata</root element>
 <element attribute=”value”>
 pcdata</element>

XML document

<?xml version=”1.0" encoding=”UTF-8"?>
<!ELEMENT root element (element)>
<!ELEMENT element (attribute)>

DTD file

XML Parser

Valid ?

Validity
correction(s)

<?xml version=”1.0" encoding=”UTF-8"?>
<root element>pcdata</root element>
 <element attribute=”value”>
 pcdata</element>

Validated XML document

Figure 2.	 XML	validation	process	using	DTD

XML	is	a	data	description	language	that	is	why	
XML	 documents	 do	 not	 carry	 information	 about	
how	to	display	the	data.	Without	using	additional	
representation	files	such	as	CSS	(Cascading	Style	
Sheet)	 or	 XSLT	 (XML	 Style	 Sheet	 Language	
Transformation),	 a	 generic	 XML	 document	 is	
rendered	as	raw	XML	text	by	XML	viewers	(in	most	
cases,	 these	refer	to	web	browsers).	Some	display	
it	with	'handles'	(e.g.	+	and	-	signs	in	the	margin)	
that	allow	parts	of	the	structure	to	be	expanded	or	
collapsed	with	mouse-clicks.

<?xml version=”1.0" encoding=”UTF-8"?>
<root element>pcdata</root element>
 <element attribute=”value”>
 pcdata</element>

XML document

<xsl:value>
Titlle:$Order
Date:$Date
</xsl:value>

XSLT code

XSLT processor

-Root Element:
 * Element1
 * Element2

-Attribute2.1

XML new representation

Figure 3. Relationship	among	XML	and	XSL

120	 	Jurnal Teknik Industri, Vol. 8, No. 2, Agustus 2007: 117–125

Extensible	Stylesheet	Language	 (XSL)	can	be	
used	to	alter	the	format	of	XML	data,	either	 into	
HTML	 or	 other	 formats	 that	 are	 suitable	 for	 a	
browser	 to	 display.	 In	 transforming	 the	 original	
XML	 document,	 an	 XSL	 Transformation	 (XSLT)	
file	is	required.	Figure	3	shows	how	transformation	
of	 XML	 document	 into	 desirable	 style.	 Inputted	
XML	 document	 is	 processed	 together	 with	 its	
transformer	XSLT	code	using	associated	processor.	
The	 result	 is	 the	 new	 representation	 of	 XML	
document.

METHODS

Ability	 to	 Process	 the	 Data.	 Information	
sharing	operator	may	need	to	process	the	data	 in	
managing	 their	 tasks.	 Common	 processes	 to	 be	
undertaken	 are	 creating	 a	 new	 XML	 document,	
adding	 a	 record	 within	 an	 existing	 XML	 file,	
modifying	 a	 record,	 or	 deleting	 a	 record.	 These	
operations	 can	 be	 completed	 by	 performing	 data	
binding	concept	The	basic	idea	of	this	concept	is	to	
utilize	associated	Java	classes,	since	Java	language	
is	 known	 as	 the	 XML's	 best	 counterpart.	 XML	
document	 can	 be	 used	 as	 a	 transfer	 mechanism	
between	source	database	and	software	application.	
This	transfer	is	performed	by	binding	a	Java	object	
(a	Java	class	instantiation)	to	an	XML	document.	
Data	binding	can	be	implemented	by	generating	a	
Java	class	to	represent	the	restrictions	of	DTD	or	
other	schemas.	User	may	utilize	this	Java	class	to	
create	a	valid	XML	document	based	on	its	DTD	or	
schema,	 to	 read	 the	 document,	 and	 to	 validate	 it	
as	well.	

There	are	still	a	lot	of	XML	processes,	especially	
employing	advance	technology,	such	as	data	binding	
based	on	schema	 in	addition	 to	DTD,	using	SAX,	
Simple	 API	 (Application	 Programming	 Interface)	
for	XML,	handler	to	parse	XML	document,	or	data	
transfer	using	XML	database	component.	However,	
these	topics	will	become	the	author's	future	works	
as	 continuation	 of	 current	 research	 presented	 in	
this	paper.	

The	 Proposed	 Lightweight	 Approach.	 Based	
on	the	XML	characteristics	aforementioned	before,	
a	 stepwise	 lightweight	 approach	 in	 implementing	
XML	document	can	be	proposed	as	follows.

Initial	 XML	 File	 Creation.	 Prerequisite	 of	
creating	initial	XML	document	is	to	determine	its	

basic	tree	structure.	In	every	XML	document	there	
is.	This	initial	step	can	be	expanded	as:

Establish	 the	 root	 element	 as	 basic,	 as	 main	
expansion	 point	 of	 following	 elements	 as	 data	
containers.	 There	 is	 always	 one	 root	 element	 in	
an	XML	document.	Determine	the	child	(children)	
element,	 as	 the	 offspring	 of	 the	 root	 element.	
Disentangle	further	grand-child	(children)	element,	
if	available.

Assign	 attribute	 correctly	 besides	 the	 child	
element.	 In	 differentiating	 the	 usage	 of	 elements	
and	 attributes	 in	 branching	 the	 document's	 tree	
structure,	 users	 have	 to	 consider	 the	 variability	
of	 either	 elements	 and	 attributes	 value.	 In	 case	
the	 considered	 value	 has	 no	 variability,	 choosing	
element	 as	 the	 branching	 representation	 is	 the	
correct	 decision.	 Contrarily,	 when	 users	 find	 one	
branching	value	is	various,	attribute	is	the	correct	
one	to	be	chosen.

Represent	 the	 above	 design	 using	 XML	
development	 environment	 tool.	 This	 step	 is	 the	
important	one	since	it	brings	to	reality	what	kind	
of	XML	document	is	being	created.	There	is	a	wide	
range	of	such	application	tools.	Assuming	that	the	
operating	 system	 is	 under	 Windows,	 users	 may	
use	 tools	 starting	 from	 the	 simple	 one	 Notepad,	
Wordpad,	to	the	famous	word	processor	MS	Word	
or	even	its	sibling	MS	Excel	for	spreadsheet.

Well-formedness	 and	 Validity	 Assurance.	
Considering	 the	 time	 saving,	 XML	 users	 usually	
employ	 XML	 development	 environment	 tool	 to	
perform	well-formedness	and	validity	test.	However,	
the	basic	testing	steps	are:

Checking	 whether	 all	 XML	 syntaxes	 are	
conformed	 to	 the	 SGML	 and	 EBNF	 rules.	 These	
rules	 address	 to	 well-formedness	 criterion.	 For	
important	note,	the	big	two	(2)	common	mistakes	
fall	in	this	category	are:	a)	Neglect	to	pair	the	open	
tag	with	its	close	tag	in	the	end	of	one	branch.	This	
mistake	happens	when	users	deal	with	a	complex	
XML	 document	 but	 apply	 a	 simple	 development	
environment	by	which	has	no	automatic	tag	pairing	
check;	and	b)	Consistency	of	tag	naming,	especially	
for	 "case	 sensitive"	 rule.	 Users	 sometimes	 are	
inattentive	to	be	consistent	in	writing	small	letters	
or	capital	ones.

Employing	XML	Schema	(most	used	one	is	DTD)	
as	the	grammar	to	determine	whether	all	elements	

Widodo: Lightweight Approach of XML Implementation	 121

and	 attributes	 within	 XML	 document	 have	 been	
placed	on	the	correct	nodes	and	carried	the	proper	
contains.	 This	 restriction	 is	 the	 manifestation	 of	
validity	criterion.

Concise	 Representation. Basically	 there	 are	
two	ways	to	represent	XML	documents:

The	first	way	is	using	the	XML	plain	text	nature.	
Users	 may	 display	 their	 XML	 file	 by	 applying	 a	
number	 of	 XML	 development	 environment	 tools.	
There	 is	 a	 wide	 range	 of	 such	 application	 tools.	
Assuming	 that	 the	 operating	 system	 is	 under	
Windows,	 users	 may	 use	 tools	 starting	 from	 the	
simple	one	Notepad,	Wordpad,	to	the	famous	word	
processor	MS	Word	or	even	its	sibling	MS	Excel	for	
spreadsheet.	

The	second	one	is	using	a	transformer	file,	either	
CSS	 or	 XSL	 file.	There	 is	 a	 In	 order	 to	 style	 the	
rendering	in	a	viewer	with	CSS,	the	XML	document	
must	include	a	reference	to	the	stylesheet:

<?xml-stylesheet	type="text/css"

href="theStylesheet.css"?>

When	the	user	needs	to	specify	client-side	XSLT,	
the	following	processing	instruction	is	required	in	
the	original	XML	document:

<?xml-stylesheet	type="text/xsl"

href="theTransformer.xsl"?>

Note	that	this	is	different	from	specifying	such	
a	 stylesheet	 in	 HTML,	 which	 uses	 the	 <link>	
element.

XML	Processing.	XML	processing	mainly	deals	
with	creating	new	XML	documents,	adding	a	new	
element	 (record)	 within	 existing	 XML	 document,	
as	well	as	modifying	it.

Creating	 a	 new	 XML	 document	 is	 a	 must	
before	 performing	 other	 actions.	 Please	 refer	 to	
sub-section	3.1	aforementioned.

Adding	 a	 new	 element,	 or	 can	 be	 referred	 as	
record,	requires	some	special	actions.	Users	have	to	
compose	an	associated	Java	class	to	perform	data	
binding.	 Within	 this	 Java	 class,	 an	 adding	 Java	
method	must	exist.

Resembling	adding	process,	modifying	an	XML	
element	also	needs	a	Java	class	 to	bind	 the	data.	
The	 emphasis	 on	 this	 action	 is	 unmarshalling	
(read)	the	original	XML	document	first,	modifying	
it,	and	then	marshalling	(write)	the	modified	one.

Exemplary	 case	 study	 elaborated	 in	 next	
section	 will	 give	 clearer	 understanding	 on	 these	
adding	and	modifying	XML	element	(record).

RESULT AND ANALYSIS

In	 this	 section,	 a	 case	 study	 of	 commerce	
domain	 problem	 is	 employed.	 Let	 us	 name	 the	
domain	 under	 discussion	 with	 XIS	 (XML-based	
Information	 Sharing)	 case	 study.	 In	 commerce	
domain,	we	have	a	lot	of	business	processes	which	
is	suitable	to	be	depicted	as	an	exemplary	case	such	
as	procurement,	inventory,	accounting,	and	so	on.	
However,	"ordering"	process	seems	to	be	the	most	
understandable	 and	 the	 simplest	 activities	 to	 be	
sampled.	 From	 now	 on,	 the	 case	 focus	 is	 only	 on	
information	sharing	of	ordering	activity.

Based	 on	 the	 proposed	 approach,	 the	 first	
thing	to	be	done	is	to	initiate	the	prime	XML	file.	
When	users	have	to	prepare	an	order	file,	at	least	
there	have	to	exist	information	about	the	ordered	
item,	how	many/much	of	quantity	needed,	and	the	
associated	 price.	 Hence,	 users	 have	 to	 determine	
that:	 a)	 The	 root	 element	 is	 "order";	 and	 b)	 The	
children	 elements	 are	 "itemID"	 for	 unique	 field	
of	 one	 particular	 item	 ordered,	 "quantity"	 for	 the	
amount	 of	 item	needed,	 and	 "price"	 to	 record	 the	
nominal	value	of	one	single	ordered	item.1

Figure	 4	 gives	 a	 conceptual	 tree	 structure	 of	
XIS	case	study.

Considering	 the	 simplicity	 of	 XIS	 case	 to	 be	
understood	 easily	 and	 due	 to	 space	 limitation,	
grand	 children	 elements	 and	 attributes	 can	 be	
omitted.	Figure	1	in	section	1	is	a	sample	XML	of	
document.

Second	 step	 is	 to	 assure	 the	 well-formedness	
and	 validity.	 In	 case	 of	 well-formedness,	 the	 only	
way	 to	 get	 passed	 is	 to	 conform	 to	 all	 SGML	
rules	 for	 grammar	 rules	 despite	 of	 the	 freedom	
characteristics	 of	 XML	 in	 preferring	 its	 tagging	
names.	 User	 can	 take	 advantage	 by	 using	 XML	
editor	 in	performing	such	action.	There	are	some	
editors	which	is	freely	available	despite	some	well-
equipped	ones	are	usually	commercial	products.	As	

122	 	Jurnal Teknik Industri, Vol. 8, No. 2, Agustus 2007: 117–125

a	 recommendation,	 XML	 users	 may	 use	 XMLSpy	
from	Altova	to	create	and	to	edit	XML	document.	
In	 case	 of	 implementing	 joint	 operation	 between	
XML	files	and	Java	classes,	JBuilder	from	Borland	
is	considered	as	one	of	the	most	favorite	integrated	
development	environment.	When	non-commercial	
tools	are	preferred,	Eclipse	and	Sun's	NetBeans	are	
favorable.

Figure 4. 	 Tree	structure	of	XIS

Figure 5. 	 DTD	for	XIS

In	 performing	 validity	 check,	 a	 DTD	 file	 is	
needed.	This	DTD	file	is	used	to	assure	all	elements	
and	data	within	XML	document	are	properly	placed	
and	 contained.	 DTD	 for	 XIS	 is	 represented	 in		
figure	5.

Having	got	the	ready	to	process	XML	file,	the	
next	 step	 is	 to	 represent	 it	 concisely.	 In	 case	 the	
user	 requires	no	additional	 style,	 about	 the	 same	
display	of	original	XML	file	will	be	represented	as	
shown	in	figure	6.

On	the	other	hand,	when	the	viewer	demands	
a	 modified	 appearance,	 a	 CSS	 (Cascading	 Style	
Sheet)	is	the	first	alternative.	This	CSS	file	can	be	

used	to	assist	the	XML	viewer	application	to	show	
tidier	 representation	 by	 eliminating	 XML	 tags.	
Figure	 7	 is	 the	 depiction	 of	 representation	 result	
accompanied	with	corresponsding	CSS	file.

Figure 6.		 The	representation	of	XIS	document	without	
additional	representation	style

In	 case	 this	 CSS	 representation	 is	 still	 not	
enough,	 an	 XSLT	 representation	 employing	 XSL	
file	 provides	 better	 solution.	 Figure	 8	 shows	 the	
representation	 of	 XIS	 document	 empowered	 by	
its	XSL	on	its	right-hand	side.	The	 last	step	 is	to	
process	the	ready	and	well-displayed	XIS	document.	
Two	(2)	main	actions	to	be	performed	here	are:

Adding	a	new	element	 (in	database,	 it	can	be	
referred	as	record	as	well),	namely	Added	Item	to	the	
current	XIS	document	(exactly	Order0612007Pro.
xml).

Modifying	the	last	element,	by	mean	to	replace	
the	last	element	of	Order0612007Pro.xml	file	(ES306-
k)	with	 the	new	element	 specified	by	 the	 input	 in	
Java	code	(Modified	Item).	Figure	9	shows	the	cutlet	
of	Java	code	to	perform	such	adding	and	modifying	
element	actions	of	Order0612007.xml	file.

When	 we	 run	 these	 Java	 class,	 the	 output	
resulted	 in	 Java	 IDE	 tool	 console	 is	 sbhown	 in	
the	 following	 figure	 10.	 This	 figure	 shows	 that	
Order0612007Pro.xml	 has	 been	 parsed	 by	 XML	
parser,	added	and	modified	with	the	specified	data	
by	associated	Java	code	depicted	in	figure	9.

In	the	first	unmarshalling	section,	the	original	
Order0612007Pro.xml	was	processed.	The	number	

Widodo: Lightweight Approach of XML Implementation	 123

of	 items	 being	 read	 is	 two	 (2).	 There	 are	 also	 a	
couple	of	data	about	the	first	and	last	item	within	
the	 original	 order	 document.	 This	 output	 shows	
that	 Java	 code	 for	data	binding	 functionality	has	
been	working	well.	Second	section	shows	the	adding	
process	result.	The	number	of	items	is	three	(3)	not	
two	 anymore	 and	 the	 last	 ordered	 item	 is	 Added	
Item,	not	ES306-k	anymore.	This	result	 indicates	
that	the	adding	process	is	also	performed	well.	The	

Figure 7. 	 The	representation	of	XIS	document	using	CSS	file

last	part	of	that	result	mentions	that	the	last	item	
has	 been	 changed	 from	 Added	 Item	 to	 Modified	
Item.	This	shift	points	out	that	modification	process	
also	has	taken	place	properly.

CONCLUSION

Based	 on	 the	 theoretical	 proposed	 approach	
and	 practical	 case	 study,	 we	 may	 conclude	 some	
important	points	as	follows:	

Figure 8. 	 The	representation	of	XIS	document	using	XSL	file

124	 	Jurnal Teknik Industri, Vol. 8, No. 2, Agustus 2007: 117–125

Figure 9.	 Java	code	for	XIS	data	binding

Figure 10. 	 Console	display	of	adding	and	modifying	result

Widodo: Lightweight Approach of XML Implementation	 125

In	this	paper,	lightweight	approach	to	implement	
XML	as	industrial	standard	for	information	sharing	
is	proposed.	This	approach	provides	a	step-by-step	
basic	guidance	how	to	process	XML	as	information	
exchange	media.	Applying	 this	approach	utilizing	
internet-based	 system,	 users	 gain	 the	 advantages	
of	 XML	 to	 make	 their	 task	 easier,	 to	 ensure	 the	
seamless	of	information	sharing	processes,	and	to	
enhance	 the	 validity	 of	 information	 exchange	 as	
well.	 The	 example	 explained	 in	 previous	 section	
shows	that	all	task	within	the	proposed	approach	
can	 be	 smoothly	 applied	 in	 a	 commerce	 problem	
domain,	XIS.	

This	 proposed	 approach	 works	 well	 in	
conjunction	with	some	additional	Java	classes.	This	
programming	 language	was	 chosen	because	of	 its	
characteristics,	write	once,	read	anywhere	(WORA).	
This	 platform-independent	 and	 non-commercial	
technology	helps	 the	proposed	approach	 in	 terms	
of	automatically	generating	Data	Type	Document	
(DTD)	 required	 and	 performing	 data	 binding	 of	
XML	processing.	However,	several	users	may	prefer	
to	 use	 some	 commercial	 language	 programming	
regarding	some	special	reasons.	In	such	case,	some	
modification	 may	 be	 required	 in	 performing	 the	
proposed	approach.

Once	 this	 lightweight	 approach	 has	 been	
accepted	 by	 larger	 information-based	 industrial	
community,	 the	 development	 of	 a	 further	 set	 of	
XML	implementation	consensus	can	provide	more	
beneficial	contribution	towards	information	sharing	
and	 E-Business	 among	 industry	 partners,	 non-
profits	organizations	and	public	sector	entities.

Future	Work

To	 create	 a	 comprehensive	 representation	 of	
the	 proposed	 approach,	 the	 author	 has	 a	 plan	 to	
develop	 an	 advance	 supporting	 system	 of	 XML	
processing	tool.	This	system	will	have	ability	to	be	a	
development	environment	tool	for	XML	document	
creation,	reviewing,	well-formedness	checking,	and	
validation	 as	 the	 basic	 functionality.	 Moreover,	
this	 approach	 may	 generate	 multiplying	 effect	
when	 it	 is	 applied	 in	 industrial	 groups.	Typically,	

XML	 standards	 are	 developed	 through	 industry	
collaboration	which	includes	entities	such	as	major	
industry	 participants,	 non-profit	 organizations	
or	 neutral	 web	 services	 firms.	 The	 purpose	 of	
these	 industry	 groups	 is	 focused	 on	 continuously	
improving	 XML	 implementation	 guidelines,	
standards,	 and	 terminology	 that	 can	 be	 applied	
throughout	 the	 industry,	 for	 example	 developing	
tagging	 dictionary	 for	 one	 particular	 group	 of	
industry	 (c.f.	 sub-section	 2.1).	 This	 fact	 becomes	
the	background	of	 the	author's	next	 future	work,	
to	 compose	a	 framework	of	XML	 implementation	
within	a	certain	industrial	collaboration.

REFERENCES
Archiniegas,	F.	XML	Developers	Guide.	Osbourne	McGraw-

Hill	Publishing,	2001.
Bray,	T.	A conversation with Tim Bray: Searching for

ways to tame the world's vast stores of information.	
Association	for	Computing	Machinery's	"Queue	
site",	2006.

Bray,	T.,	Jean	Paoli,	C.,	Sperberg-McQueen	M.,	Maler	E.,	
Yergeau	F.	Extensible Markup Language (XML) 1.0
(Fourth Edition)	-	Origin and Goals.	World	Wide	
Web	Consortium.	Retrieved	on	October	29,	2006.

Brown,	D.A.,	Tittle,	E.	Schaum's Easy Outline XML:
Outline of Theory and Problem of XML.	McGraw-
Hill	Co.,	2004.

Castro,	 E.	 HTML for the World Wide Web: Visual
QuickStart Guide, Fifth Edition with XHTML and
CSS.	Peachpit	Press,	1999.

Cate,	F.H.,	Staten,	M.E.	The Value of Information Sharing.	
Protecting	Privacy	in	the	New	Millennium	Series,	
2000.

DeRose,	Steven	J.	The SGML FAQ Book.	Boston:	Kluwer	
Academic	Publishers,	1997.

Harold,	E.R.,	Means,	W.S.	XML in Nutshell (third edition).	
O'Reilly	Media	Inc.,	CA,	2004.

Horton,	I.	Ivor Horton's Beginning Java 2 TM SDK	1.4
Edition.	Wiley	Publishing	Inc.,	IN,	2003

Main	page	for	World	Wide	Web	Consortium	(W3C)	XML	
activity	and	information.	http://www.w3.org/XML.

McLaughin,	B.,	Loukides,	M. Java and XML.	O'Reilly	
Media	Inc.,	CA,	2000.

Vlist,	E.	Relax NG.	O'Reilly	Publisher,	2003.
Why	XML,	Software	AG,	http://www.epa.gov/	epaoswer/

osw/conserve/plugin/.

