
117

LIGHTWEIGHT APPROACH OF XML IMPLEMENTATION AS
INDUSTRIAL STANDARD FOR INFORMATION SHARING

Erwin Widodo
Industrial Engineering Department, Sepuluh Nopember Institute of Technology, ITS, Surabaya.
Kampus ITS Sukolilo Surabaya 60111
erwin@ie.its.ac.id

ABSTRACT

Information sharing in supply chain has emerged as one critical factor in maintaining company's responssiveness.
This ability is needed to overcome both the supplier and customer requirements in sharing their data to accomplish
their operational routines. A lot of efforts have been devoted in such research area including XML (eXtensible Markup
Language) technology. However, a stepwise approach on how to utilize this advance technology is still lacking. This paper
proposed a lightweight approach to implement XML in information sharing firmly. The main XML characteristics will
be exploited so that the advantages of utilizing this mark up language may be highlighted. Based on these important
remarks a lightweight approach of implementing XML is possible to be composed. The expected outcome is a step-by-step
guidance for data exchanger to utilize XML simply but precisely and accurately. A case study of information sharing in
commerce is elaborated to enhance our understanding on how to implement this approach in real domain problem.

Key words: XML, information sharing

INTRODUCTION

The usage of information in companies' decision
making is definitely important in current global
environment. The demand of fast, interchangeable,
and reliable information is rapidly increasing. From
supply chain point of view, a company needs to have
an access to its customer demand information in
preparing its own production or service output. On
the other hand, it is also important for this company
to discern its supplier information in providing
the required inputs. XML (eXtensible Markup
Language), one type of markup language, becomes
one feasible solution to answer this challenge.

Basically XML is one subset of SGML (Standard
General Markup Language). This markup
language was proposed by W3C (World Wide Web
Consortium) in February 1998. Its primary purpose
is to facilitate the data sharing across different
information systems, particularly among several
systems connected via internet. XML provides a text-
based mean to describe and apply a tree structure
of represented information. At its base level, all

information is manifested as text, equipped with
markup that indicates the information's separation
into a hierarchy of container-like elements
altogether with attributes and character data of
those elements. Figure 1 below shows a example of
truncated XML document in commerce area. There
is a set of order information which includes two (2)
different items ordered accompanied with their
details, namely item ID, quantity, and price.

Regarding its characteristics, there are a
number of XML main advantages, such as: It is
platform-independent, thus relatively immune to
changes in technology; Its format which is based
on international standards, human and machine
readable; It has support for Unicode, allowing
almost any information to be communicated; It
has ability to represent the most general computer
science data structures: records, lists and trees;
User may perform self-documenting format that
describes user-own structure and field names; XML
document can be parsed by using its structure to
process the data.

118	 Jurnal Teknik Industri, Vol. 8, No. 2, Agustus 2007: 117–125

Figure 1.	 E x a m p l e o f a s i m p l i f i e d X M L
representation

Besides those strong points, this markup
language is also preferable because of some
supporting reasons such as plain text manifestation
and extensive experience inherited from previous
markup language. Having realized the merits
of XML, data exchange operators have a very
promising solution in overcoming the main hurdle
in data exchange operations among supply chain
echelons.

Most companies store their data and
information in various format, including paper
documents, electronic documents, spreadsheets,
and relational databases This situation leads for
interoperability problem when they want to manage
their information sharing. Therefore, by utilizing a
common information sharing format the individual
industrial partners do not need to invest heavily
in new and interoperable computer systems or
databases. They just need to format information in
a common structure. In this case, XML is definitely
the proper solution. Moreover, this solution is also
becoming easier as most used word processors and
spreadsheet programs allow for the creation of
XML documents.

The usage of XML will become more effective
in cross-industrial border information sharing
when a step wise approach is available. A lot of
researches have been done about XML, nonetheless,
there is still lack on providing a set of step by step
operational guidance how to gain the merits of

this beneficial document in information sharing.
Based on this problem, this paper tries to provide a
bridging result between XML strong points and the
favorable XML operational routines by proposing
a lightweight approach in XML implementation as
an industrial standard for information sharing.

The rest of this paper is organized as follows:
Figure 2 describes the XML characteristics by
which become the underlying justification to
compose the aimed approach. Figure 3 elaborates
the main section of this paper, the lightweight
approach. There exists some step-by-step guidance
for information sharing routines. Afterwards, a case
study of XIS, XML-based Information Sharing in
commerce area is presented in figure 4. This section
is prepared to enhance reader's understanding
about the proposed approach. As usual, the next
part, figure 5, sums up some important remarks of
this research. Finally, a short reference of future
work as a further expansion of this research ends
this paper.

XML possesses some specific characteristics
which makes this format is very useful in
information sharing. In this section, there is
a brief review of them in each associated sub-
sections. Regardless the type of business, either
B2B (business to business) or B2C (business to
customer), these characteristics are very beneficial
in performing information sharing among supply
chain players.

Compare to HTML, XML provides a "user-
defined tagging" system in marking up their data
with appropriate tag characters. By using XML,
information operators are free to determine
the root element tag, element tag, sub-element
tag, sub-sub-element tag, and so on. When the
attributes are necessary, users also have freedom
to concatenate those attributes tag with associated
element tag (c.f. section, advantage of XML no. 5).
Contrarily, when data operators have to deal with
the previous version of markup language, HTML,
they have to stay focus in creating, processing,
displaying, and maintaining a mixture of data and
its structure in a single document in addition to
inflexible vocabulary of elements and attributes.
The Basic syntax of XML is:

<name attribute="value">content</name>

Widodo: Lightweight Approach of XML Implementation	 119

Name refers to the tag name for element
under consideration. Tag name for one particular
non-empty element always has start tag name
surrounded by angle brackets (<name>) and end
tag name also surrounded by angle brackets with
slash preceding the name (</name>). Attribute is
a specific value for an element included in the start
tag. An attribute value should be quoted using
single or double quotes. One attribute name only
appears once in any elements. Content is the main
data for element under consideration. Everything
written between start and end tag is the content
of element under consideration. Users are free to
give names of these name and attributes, unlike in
HTML which is very strict to the rules of SGML
and EBNF (Extended Backus-Naur Form).

Even XML users have sufficient freedom to
construct their documents, there are still two
restraining rules to be followed. The first one is
known as "well formedness." This rule is fulfilled
when all of document contents conform to all of
XML's syntax rules. A document that is not well-
formed is not considered to be XML; a parser,
an analyzer of XML document, is not allowed to
process it. For example, if a non-empty element
has an opening tag with no closing tag, this XML
document is not well-formed.

Second rule in constructing XML documents
is "validity." A valid XML document has data that
conforms to a particular set of "user-defined content
rules." These rules are commonly represented by
Schemas. An XML Schema is a description of a type
of XML document, typically expressed in terms
of constraints on the structure and content of
documents of that type, above and beyond the basic
constraints imposed by XML itself. A number of
standard and proprietary XML schema languages
have emerged for the purpose of formally expressing
such Schemas, and some of these languages are
XML-based, themselves.

For example, if an element in one particular
branch of a document tree structure is required
to contain text that can be interpreted as being an
integer numeric value, and it instead has the text
"hello", or has other elements, then the document is
considered as not valid.

In performing such validity, user have to parse
the input XML document altogether with the casting
DTD file, the oldest Schema format for XML, into

a specific validating system. The main component
of this system is XML parser. There is a number of
XML parser available freely, however, Xerces seems
to be the most famous one. Figure 2 reflects how
DTD works towards validating process.

<?xml version=”1.0" encoding=”UTF-8"?>
<root element>pcdata</root element>
 <element attribute=”value”>
 pcdata</element>

XML document

<?xml version=”1.0" encoding=”UTF-8"?>
<!ELEMENT root element (element)>
<!ELEMENT element (attribute)>

DTD file

XML Parser

Valid ?

Validity
correction(s)

<?xml version=”1.0" encoding=”UTF-8"?>
<root element>pcdata</root element>
 <element attribute=”value”>
 pcdata</element>

Validated XML document

Figure 2.	 XML validation process using DTD

XML is a data description language that is why
XML documents do not carry information about
how to display the data. Without using additional
representation files such as CSS (Cascading Style
Sheet) or XSLT (XML Style Sheet Language
Transformation), a generic XML document is
rendered as raw XML text by XML viewers (in most
cases, these refer to web browsers). Some display
it with 'handles' (e.g. + and - signs in the margin)
that allow parts of the structure to be expanded or
collapsed with mouse-clicks.

<?xml version=”1.0" encoding=”UTF-8"?>
<root element>pcdata</root element>
 <element attribute=”value”>
 pcdata</element>

XML document

<xsl:value>
Titlle:$Order
Date:$Date
</xsl:value>

XSLT code

XSLT processor

-Root Element:
 * Element1
 * Element2

-Attribute2.1

XML new representation

Figure 3.	 Relationship among XML and XSL

120	 Jurnal Teknik Industri, Vol. 8, No. 2, Agustus 2007: 117–125

Extensible Stylesheet Language (XSL) can be
used to alter the format of XML data, either into
HTML or other formats that are suitable for a
browser to display. In transforming the original
XML document, an XSL Transformation (XSLT)
file is required. Figure 3 shows how transformation
of XML document into desirable style. Inputted
XML document is processed together with its
transformer XSLT code using associated processor.
The result is the new representation of XML
document.

METHODS

Ability to Process the Data. Information
sharing operator may need to process the data in
managing their tasks. Common processes to be
undertaken are creating a new XML document,
adding a record within an existing XML file,
modifying a record, or deleting a record. These
operations can be completed by performing data
binding concept The basic idea of this concept is to
utilize associated Java classes, since Java language
is known as the XML's best counterpart. XML
document can be used as a transfer mechanism
between source database and software application.
This transfer is performed by binding a Java object
(a Java class instantiation) to an XML document.
Data binding can be implemented by generating a
Java class to represent the restrictions of DTD or
other schemas. User may utilize this Java class to
create a valid XML document based on its DTD or
schema, to read the document, and to validate it
as well.

There are still a lot of XML processes, especially
employing advance technology, such as data binding
based on schema in addition to DTD, using SAX,
Simple API (Application Programming Interface)
for XML, handler to parse XML document, or data
transfer using XML database component. However,
these topics will become the author's future works
as continuation of current research presented in
this paper.

The Proposed Lightweight Approach. Based
on the XML characteristics aforementioned before,
a stepwise lightweight approach in implementing
XML document can be proposed as follows.

Initial XML File Creation. Prerequisite of
creating initial XML document is to determine its

basic tree structure. In every XML document there
is. This initial step can be expanded as:

Establish the root element as basic, as main
expansion point of following elements as data
containers. There is always one root element in
an XML document. Determine the child (children)
element, as the offspring of the root element.
Disentangle further grand-child (children) element,
if available.

Assign attribute correctly besides the child
element. In differentiating the usage of elements
and attributes in branching the document's tree
structure, users have to consider the variability
of either elements and attributes value. In case
the considered value has no variability, choosing
element as the branching representation is the
correct decision. Contrarily, when users find one
branching value is various, attribute is the correct
one to be chosen.

Represent the above design using XML
development environment tool. This step is the
important one since it brings to reality what kind
of XML document is being created. There is a wide
range of such application tools. Assuming that the
operating system is under Windows, users may
use tools starting from the simple one Notepad,
Wordpad, to the famous word processor MS Word
or even its sibling MS Excel for spreadsheet.

Well-formedness and Validity Assurance.
Considering the time saving, XML users usually
employ XML development environment tool to
perform well-formedness and validity test. However,
the basic testing steps are:

Checking whether all XML syntaxes are
conformed to the SGML and EBNF rules. These
rules address to well-formedness criterion. For
important note, the big two (2) common mistakes
fall in this category are: a) Neglect to pair the open
tag with its close tag in the end of one branch. This
mistake happens when users deal with a complex
XML document but apply a simple development
environment by which has no automatic tag pairing
check; and b) Consistency of tag naming, especially
for "case sensitive" rule. Users sometimes are
inattentive to be consistent in writing small letters
or capital ones.

Employing XML Schema (most used one is DTD)
as the grammar to determine whether all elements

Widodo: Lightweight Approach of XML Implementation	 121

and attributes within XML document have been
placed on the correct nodes and carried the proper
contains. This restriction is the manifestation of
validity criterion.

Concise Representation. Basically there are
two ways to represent XML documents:

The first way is using the XML plain text nature.
Users may display their XML file by applying a
number of XML development environment tools.
There is a wide range of such application tools.
Assuming that the operating system is under
Windows, users may use tools starting from the
simple one Notepad, Wordpad, to the famous word
processor MS Word or even its sibling MS Excel for
spreadsheet.

The second one is using a transformer file, either
CSS or XSL file. There is a In order to style the
rendering in a viewer with CSS, the XML document
must include a reference to the stylesheet:

<?xml-stylesheet type="text/css"

href="theStylesheet.css"?>

When the user needs to specify client-side XSLT,
the following processing instruction is required in
the original XML document:

<?xml-stylesheet type="text/xsl"

href="theTransformer.xsl"?>

Note that this is different from specifying such
a stylesheet in HTML, which uses the <link>
element.

XML Processing. XML processing mainly deals
with creating new XML documents, adding a new
element (record) within existing XML document,
as well as modifying it.

Creating a new XML document is a must
before performing other actions. Please refer to
sub-section 3.1 aforementioned.

Adding a new element, or can be referred as
record, requires some special actions. Users have to
compose an associated Java class to perform data
binding. Within this Java class, an adding Java
method must exist.

Resembling adding process, modifying an XML
element also needs a Java class to bind the data.
The emphasis on this action is unmarshalling
(read) the original XML document first, modifying
it, and then marshalling (write) the modified one.

Exemplary case study elaborated in next
section will give clearer understanding on these
adding and modifying XML element (record).

Result and ANALYSIS

In this section, a case study of commerce
domain problem is employed. Let us name the
domain under discussion with XIS (XML-based
Information Sharing) case study. In commerce
domain, we have a lot of business processes which
is suitable to be depicted as an exemplary case such
as procurement, inventory, accounting, and so on.
However, "ordering" process seems to be the most
understandable and the simplest activities to be
sampled. From now on, the case focus is only on
information sharing of ordering activity.

Based on the proposed approach, the first
thing to be done is to initiate the prime XML file.
When users have to prepare an order file, at least
there have to exist information about the ordered
item, how many/much of quantity needed, and the
associated price. Hence, users have to determine
that: a) The root element is "order"; and b) The
children elements are "itemID" for unique field
of one particular item ordered, "quantity" for the
amount of item needed, and "price" to record the
nominal value of one single ordered item.1

Figure 4 gives a conceptual tree structure of
XIS case study.

Considering the simplicity of XIS case to be
understood easily and due to space limitation,
grand children elements and attributes can be
omitted. Figure 1 in section 1 is a sample XML of
document.

Second step is to assure the well-formedness
and validity. In case of well-formedness, the only
way to get passed is to conform to all SGML
rules for grammar rules despite of the freedom
characteristics of XML in preferring its tagging
names. User can take advantage by using XML
editor in performing such action. There are some
editors which is freely available despite some well-
equipped ones are usually commercial products. As

122	 Jurnal Teknik Industri, Vol. 8, No. 2, Agustus 2007: 117–125

a recommendation, XML users may use XMLSpy
from Altova to create and to edit XML document.
In case of implementing joint operation between
XML files and Java classes, JBuilder from Borland
is considered as one of the most favorite integrated
development environment. When non-commercial
tools are preferred, Eclipse and Sun's NetBeans are
favorable.

Figure 4. 	 Tree structure of XIS

Figure 5. 	 DTD for XIS

In performing validity check, a DTD file is
needed. This DTD file is used to assure all elements
and data within XML document are properly placed
and contained. DTD for XIS is represented in 	
figure 5.

Having got the ready to process XML file, the
next step is to represent it concisely. In case the
user requires no additional style, about the same
display of original XML file will be represented as
shown in figure 6.

On the other hand, when the viewer demands
a modified appearance, a CSS (Cascading Style
Sheet) is the first alternative. This CSS file can be

used to assist the XML viewer application to show
tidier representation by eliminating XML tags.
Figure 7 is the depiction of representation result
accompanied with corresponsding CSS file.

Figure 6. 	 The representation of XIS document without
additional representation style

In case this CSS representation is still not
enough, an XSLT representation employing XSL
file provides better solution. Figure 8 shows the
representation of XIS document empowered by
its XSL on its right-hand side. The last step is to
process the ready and well-displayed XIS document.
Two (2) main actions to be performed here are:

Adding a new element (in database, it can be
referred as record as well), namely Added Item to the
current XIS document (exactly Order0612007Pro.
xml).

Modifying the last element, by mean to replace
the last element of Order0612007Pro.xml file (ES306-
k) with the new element specified by the input in
Java code (Modified Item). Figure 9 shows the cutlet
of Java code to perform such adding and modifying
element actions of Order0612007.xml file.

When we run these Java class, the output
resulted in Java IDE tool console is sbhown in
the following figure 10. This figure shows that
Order0612007Pro.xml has been parsed by XML
parser, added and modified with the specified data
by associated Java code depicted in figure 9.

In the first unmarshalling section, the original
Order0612007Pro.xml was processed. The number

Widodo: Lightweight Approach of XML Implementation	 123

of items being read is two (2). There are also a
couple of data about the first and last item within
the original order document. This output shows
that Java code for data binding functionality has
been working well. Second section shows the adding
process result. The number of items is three (3) not
two anymore and the last ordered item is Added
Item, not ES306-k anymore. This result indicates
that the adding process is also performed well. The

Figure 7. 	 The representation of XIS document using CSS file

last part of that result mentions that the last item
has been changed from Added Item to Modified
Item. This shift points out that modification process
also has taken place properly.

CONClUsion

Based on the theoretical proposed approach
and practical case study, we may conclude some
important points as follows:

Figure 8. 	 The representation of XIS document using XSL file

124	 Jurnal Teknik Industri, Vol. 8, No. 2, Agustus 2007: 117–125

Figure 9.	 Java code for XIS data binding

Figure 10. 	 Console display of adding and modifying result

Widodo: Lightweight Approach of XML Implementation	 125

In this paper, lightweight approach to implement
XML as industrial standard for information sharing
is proposed. This approach provides a step-by-step
basic guidance how to process XML as information
exchange media. Applying this approach utilizing
internet-based system, users gain the advantages
of XML to make their task easier, to ensure the
seamless of information sharing processes, and to
enhance the validity of information exchange as
well. The example explained in previous section
shows that all task within the proposed approach
can be smoothly applied in a commerce problem
domain, XIS.

This proposed approach works well in
conjunction with some additional Java classes. This
programming language was chosen because of its
characteristics, write once, read anywhere (WORA).
This platform-independent and non-commercial
technology helps the proposed approach in terms
of automatically generating Data Type Document
(DTD) required and performing data binding of
XML processing. However, several users may prefer
to use some commercial language programming
regarding some special reasons. In such case, some
modification may be required in performing the
proposed approach.

Once this lightweight approach has been
accepted by larger information-based industrial
community, the development of a further set of
XML implementation consensus can provide more
beneficial contribution towards information sharing
and E-Business among industry partners, non-
profits organizations and public sector entities.

Future Work

To create a comprehensive representation of
the proposed approach, the author has a plan to
develop an advance supporting system of XML
processing tool. This system will have ability to be a
development environment tool for XML document
creation, reviewing, well-formedness checking, and
validation as the basic functionality. Moreover,
this approach may generate multiplying effect
when it is applied in industrial groups. Typically,

XML standards are developed through industry
collaboration which includes entities such as major
industry participants, non-profit organizations
or neutral web services firms. The purpose of
these industry groups is focused on continuously
improving XML implementation guidelines,
standards, and terminology that can be applied
throughout the industry, for example developing
tagging dictionary for one particular group of
industry (c.f. sub-section 2.1). This fact becomes
the background of the author's next future work,
to compose a framework of XML implementation
within a certain industrial collaboration.

REFERENCES
Archiniegas, F. XML Developers Guide. Osbourne McGraw-

Hill Publishing, 2001.
Bray, T. A conversation with Tim Bray: Searching for

ways to tame the world's vast stores of information.
Association for Computing Machinery's "Queue
site", 2006.

Bray, T., Jean Paoli, C., Sperberg-McQueen M., Maler E.,
Yergeau F. Extensible Markup Language (XML) 1.0
(Fourth Edition) - Origin and Goals. World Wide
Web Consortium. Retrieved on October 29, 2006.

Brown, D.A., Tittle, E. Schaum's Easy Outline XML:
Outline of Theory and Problem of XML. McGraw-
Hill Co., 2004.

Castro, E. HTML for the World Wide Web: Visual
QuickStart Guide, Fifth Edition with XHTML and
CSS. Peachpit Press, 1999.

Cate, F.H., Staten, M.E. The Value of Information Sharing.
Protecting Privacy in the New Millennium Series,
2000.

DeRose, Steven J. The SGML FAQ Book. Boston: Kluwer
Academic Publishers, 1997.

Harold, E.R., Means, W.S. XML in Nutshell (third edition).
O'Reilly Media Inc., CA, 2004.

Horton, I. Ivor Horton's Beginning Java 2 TM SDK 1.4
Edition. Wiley Publishing Inc., IN, 2003

Main page for World Wide Web Consortium (W3C) XML
activity and information. http://www.w3.org/XML.

McLaughin, B., Loukides, M. Java and XML. O'Reilly
Media Inc., CA, 2000.

Vlist, E. Relax NG. O'Reilly Publisher, 2003.
Why XML, Software AG, http://www.epa.gov/ epaoswer/

osw/conserve/plugin/.

