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abstract

The vehicle routing problem is investigated by using some adaptations of the variable neighborhood search (VNS). 
The initial solution was obtained by Dijkstra’s algorithm based on cost network constructed by the sweep algorithm and 
the 2-opt. Our VNS algorithm use several neighborhoods which were adapted for this problem. In addition, a number of 
local search methods together with a diversification procedure were used. The algorithm was then tested on the data sets 
from the literature and it produced competitive results if compared to the solutions published. 
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INTRODUCTION

The Vehicle Routing Problem (VRP) has an 
important role in distribution management and 
it is one of the most widely studied problems in 
combinatorial optimization. The VRP is a problem 
where a number of customers need to be served by 
a number of homogeneous vehicles based at a single 
depot. In this problem, each customer is visited 
exactly once; the maximum capacity of the vehicle 
and the maximum length of the route must not be 
exceeded. The objective here is to find a set of routes 
which fulfil all requirements mentioned above 
with the least cost. There are two types of methods 
used to solve the VRP, namely exact methods and 
heuristic methods. For small instances (say n<30), 
the VRP could be solved in a reasonable computing 
time by using exact methods such as Integer Linear 
Programming. However, these methods become 
ineffective for large problems as the computation 
becomes too time consuming. The increase in 
computing time is due to the fact that the VRP is an 
NP-hard problem (Lenstra and Rinnooy Kan, 1975). 
In other words, it is unlikely that a polynomial time 
algorithm can be found for such a problem.

There are many papers addressing the VRP. The 
following are some VRP paper that we divide into 
two categories, exact and heuristic methods. Exact 
Methods, exact methods for solving the VRP were 
developed starting from the late 1950s by Dantzig 
and Ramser (1959) and Garvin et al.(1975). Dantzig 
and Ramser (1959) modified the algorithm, originally 
proposed for the TSP by Dantzig et al. (1954) to 
address the VRP. Eilon et al. (1971) developed a 

Dynamic Programming approach to address the VRP. 
Laporte and Norbert (1987) and Laporte et al. (1992) 
proposed a Branch and Bound approach. Heuristic 
Methods, the saving algorithm was proposed by Clarke 
and Wright (1964). It then became a basis of many 
algorithms developed to solve the VRP. Christofides 
and Eilon (1969) proposed an improvement method 
for the VRP which uses the 2-opt and the 3-opt 
initially developed by Lin (1965) to solve the TSP. 
Salhi and Rand (1987) developed a heuristic that 
considers several refinement procedures including 
the perturb procedure which consider three routes 
simultaneously to improve the initial solution. Osman 
(1993) applied Simulated Annealing and Tabu Search 
metaheuristics with his l- interchange method. 

Taillard (1993) proposed a procedure that 
partitioned large problems into several sub-problems 
before applying Tabu Search. Xu and Kelly (1996) 
introduced a heuristic search using a network flow-
based Tabu Search. Neural Network algorithm was 
also put forward and this was carried out by Torki 
et al. (1997). A variant of the threshold accepting 
algorithm called Backtracking Adaptive Threshold 
Accepting algorithm (BATA) was developed by 
Tarantilis et al. (2002). Prins (2004) developed a 
method based on Genetic Algorithm (GA). Pisinger 
and Ropke (2007)introduced a general heuristic 
that can solve five different variants of the VRP. 
An Improved Ant Colony Optimization (IACO) was 
proposed by Yu et al. (2009). The remaining parts 
of the paper are organized as follows. The proposed 
VNS algorithm is presented in Section 2. The 
explanation of its main steps is provided in Section 
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3. The computational results are given in Section 4. 
The last section summarizes our findings. 

Adaptation of the Variable Neighborhood 
Search 

Variable Neighbourhood Search (VNS) is a 
metaheuristic method first proposed by Mladenovic 
(1995) and later formally formulated by Mladenovic 
and Hansen (1997). This heuristic has been applied to 
several NP-hard problems with excellent success. The 
main reasoning of this metaheuristic is based on the 
idea of a systematic change of neighborhoods within 
a local search method. The basic VNS algorithm is 
presented in Figure 1 and follows closely the notation 
of the authors. 

Initialization. Select a set of neighbourhood 
structures Nk, for k = 1,..., kmax that will be used in 
the search; find an initial solution x and choose a 
stopping condition; Repeat the following sequence 
until the stopping condition is met:
1)	 Set k  1
2)	 Repeat the following steps until k = kmax:

a)	 Shaking Generate a point  at random from 
the kth neighbourhood of x(  Î Nk(x));

b)	 Local search Apply some local search method 
with  as an initial solution;

	 denote with  the so obtained local 
optimum;

c)	 Move or not If the local optimum  is better 
than the incumbent x, move there (x" ), 
and continue the search with N1(k1); 
otherwise, set k k+1 and go to Step 2(a).

The basic VNS algorithm

The basic VNS algorithm starts by selecting a set 
of neighborhood structures Nk (k = 1,..., kmax), where 
Nk is the kth

 neighborhood. Given an initial solution 

x, a random point  in Nk(x) is generated using a 
neighborhood structure Nk and then a local search, 
starting from  is performed to produce . The 
use of  can be considered as a way of maintaining 
diversification through the search. If  is better than 
the incumbent best solution x, then x = , and the 
search returns to N1, otherwise the search explores 
the next neighborhood Nk+1. This is repeated until  
k = kmax. Interesting new variants of this classical 
VNS are presented in Hansen and Mladenovic 
(2003).

Some enhancements to the basic VNS 
algorithm

In this study, the basic VNS algorithm is adapted 
to solve the VRP. To our knowledge, this is the first 
VNS implementation to this particular routing 
problem. The basic VNS algorithm is enhanced by the 
use of additional features which include adopting a 
set of local search procedures including Dijkstra, and 
introducing a diversification scheme. The proposed 
algorithm is described in Figure 1.

An overview of the proposed algorithm

An initial solution x is first generated and it is 
used as the initial global best, xbest. We have a set of 
neighborhood structures Nk, (k=1,..., kmax) and a set of 
refinement procedures which will be described later. 
The search begins by generating a random feasible 
solution  from N1(x), which is taken as the temporary 
solution.  is then improved by the set of local searches 
(refinement procedures) which are implemented 
within a multi-level framework (Salhi and Sari 1997). 
If the solution obtained by the multi-level approach, 

, is better than the incumbent best solution x, then 
x =  and the search reverts back to N1. But if  is 
found to be worse or the same as x, we generate  
from the next neighborhood say Nk(x) and apply the 

Step (0)	 Initialization. Define a set of neighborhood structures Nk, for k = 1, ..., kmax and a set of local  
	 searches Rl, for l =1, ..., lmax. Set the maximum number of diversifications, NbDivMax and the  
	 number of diversifications, NbDiv = 0. Generate an initial solution x and set xbest = x. 
Step (2)	 Set k  1
Step (3)	 Repeat the following steps until k = kmax:
	 (a)  Shaking. Generate a point  at random from the kth neighborhood of x(  Î Nk(x));
	 (b)  Local search: Apply a multi-level approach to find the best neighbour .
	 (c)  Move or not. If the local optimum  is better than the incumbent x, 
	 set x   and go to (2); otherwise set k  k+1.
Step (4)	 Construct the cost network using the incumbent x and apply Dijkstra’s algorithm to get . If the  
	 new solution  is better than x, set x   and go to (2).
Step (5)	 If the solution x is better than xbest, set xbest  x;
	 If NbDiv > NbDivMax then stop, else set NbDiv  NbDiv + 1, apply the diversification procedure  
	 and go to (1). 

Figure 1.	 VNS-based VRP algorithm
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multi-level approach again. The process is repeated 
until the search reaches Nkmax 

If the solution obtained 
from Step 3 is worse than the incumbent xbest, a cost 
network, as described in Section 3, is constructed 
based on x and then Dijkstra’s algorithm is utilized 
on this cost network to generate . If  is better than 
x the search reverts back to N1 with x = , otherwise 
a diversification procedure is introduced to produce 
a new initial solution, x, and the process is repeated 
starting from Step 2. The search terminates after a 
maximum number of diversifications (NbDivMax) is 
reached. 

METHOD

The procedures used within the steps of the 
algorithm are as follow.

Initial solution (Step 0)

The initial solution is obtained in three steps; (a) 
construct a giant tour using the sweep algorithm of 
Gillett and Miller (1974), (b) improve this tour using 
the 2-opt of Lin (1965), and (c) construct the cost 
network and then apply Dijkstra’s algorithm (1959) to 
find the optimal solution for the shortest path based 
on the corresponding cost network. This partitioning 
procedure based on solving the shortest path problem 
was presented by Beasley (1983) for solving the VRP 
and by Golden et al. (1984) for the Heterogeneous 
Fleet VRP. To avoid using the largest distance 
between two successive customers in a given route, 
the starting points, in the construction of the cost 
network, are used as those that generate the highest 
largest distances between two successive customers 
(i.e. gaps) in the giant tour. The number of gaps (NG) 
generated is defined as follows:

NG = Min{max(8,
NR

), ((i,i+1:gi>min( ,
g+

))}
2 2

where, NR is the number of routes found by 
Dijkstra’s algorithm, (i,i+1) the ordered sequence of 
customers, gi the ith gap (i.e. the distance between 
customer i and i+1),  the average gap, and g+the 
largest gap. The reasoning of using (1) is based on 
the idea of linking the value of NG to the number 
of routes and also to the number of gaps that relate 
to the average as well as the largest gap. For each of 
the NG selected gaps, say (i1,i1+1), two cost networks 
are then generated starting from i1 anticlockwise 
and from i1+1 clockwise. Dijkstra’s algorithm is then 
applied to each of these 2 × NG cost networks. 

Neighborhood Structures (Step 3a)

Six neighborhoods, which are briefly described in 
this subsection, are used in this study (i.e. kmax = 6). 

These include the 1-1 interchange (swap), two types 
of the 2-0 shift, the 2-1 interchange, and two types of 
the perturbation. The order of the neighborhoods is 
as follows; the 1-1 interchange is used as N1, the 2-0 
shift of type 1 as N2, the 2-1 interchange as N3, the 
perturbation of type 1 as N4, the perturbation of type 
2 as N5, and finally the 2-0 shift of type 2 as N6. 

The 1-1 interchange (the swap procedure)

This neighborhood is aimed at generating a 
feasible solution by swapping a pair of customers from 
two routes. This procedure starts by taking a random 
customer from a randomly chosen route and tries to 
swap it systematically with other customers by taking 
into consideration all other routes. This procedure is 
repeated until a feasible move is found.

The 2-0 shift 

In the 2-0 shift, two consecutive random 
customers from a randomly chosen route are selected. 
These two customers are considered together for 
possible insertion in other routes in a systematic 
manner. This procedure is repeated until a feasible 
move is found. We name this procedure the 2-0 shift 
of type 1. Another 2-0 shift, which we refer to as the 
2-0 shift of type 2, is similar to the above shift except 
that the two customers are allowed to be inserted into 
two different routes.

The 2-1 interchange 

This type of insertion attempts to shift two 
consecutive random customers from a randomly 
chosen route to another route selected systematically 
while getting one customer from the receiver route 
until a feasible move is obtained. 

A new perturbation mechanism

This scheme was initially developed by Salhi and 
Rand (1987) for the VRP by considering three routes 
simultaneously. Here, it starts by taking a random 
customer from a randomly chosen route and tries to 
relocate that customer into another route without 
considering capacity and time constraints in the 
receiver route. A customer from the receiver route is 
then shifted to the third route if both capacity and 
time constraints for the second and the third route are 
not violated. We refer to this as the perturbation of 
type 1. An extension of such a perturbation is the one 
that shifts two consecutive customers from a route. 
In this procedure, instead of removing one customer 
at the beginning we remove two customers. We name 
this procedure as the perturbation of type 2.

Local Search (Step 3b)

Six refinement procedures are adopted to make 
up our local search. The order of the refinement 
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procedures is as follows: the 1-insertion inter-route 
as the first refinement procedure R1, the 2-opt inter-
route as R2, the 2-opt intra-route as R3, the swap 
intra-route as R4, 1- insertion intra-route as R5, and 
finally the 2-insertion intra-route as R6. 

The process starts by generating a random 
feasible solution  from N1, which is used as the 
temporary solution. The multi-level approach then 
starts by finding the best solution  using R1. If  
is better than , then  =  and the search returns 
to R1, otherwise the next refinement procedure is 
applied. This process is repeated until R6 cannot 
produce a better solution. 

The 1-insertion procedures (inter-route and 
intra-route)

Two types of the 1-insertion procedures are used. 
The first is the 1-insertion intra-route and the second 
is the 1-insertion inter-route. In the 1-insertion intra-
route we remove a customer from its position in a 
route and try to insert it elsewhere within that route 
in order to have a better solution. Meanwhile, in the 
1-insertion inter-route, each customer from a route 
is shifted from its position and tried to be inserted 
elsewhere into another route. If this shifting does not 
violate any constraints and improves the solution, the 
selected customer is then permanently removed.

The 2-insertion (intra-route)

The 2-insertion intra-route allows us to remove 
two consecutive customers and insert them elsewhere 
within a route to produce a cheaper route. 

The 2-opt (inter-route and intra-route)

The 2-opt intra-route, usually refer to as the 2-
opt (Lin, 1965), is an old but a simple and an effective 
improvement procedure that works by removing two 
non adjacent arcs and adding two new arcs while 
maintaining the tour structure. A given exchange is 
accepted if the resulting total cost is lower than the 
previous total cost. The exchange process is continued 
until no further improvement can be found. The 2-opt 
inter-route is similar to the 2-opt intra-route except 
that it considers two routes where each of the two 
arcs belong to a different route and reverse directions 
of the corresponding affected path of each route.

The swap (intra-route)

The swap intra-route is aimed at reducing the 
total cost of a route by swapping positions of a pair 
of customers within the route. 

Use of Dijkstra’s Algorithm as an Extra 
Refinement (Step 4)

Dijkstra’s algorithm, besides being used to 
generate an initial solution, is also applied as a post 

optimizer. Here, the cost network is constructed 
from the incumbent best solution. The aim is to see 
whether the optimal solution for the shortest path 
based on the corresponding cost network is different 
to the current one or not. In this procedure, the two 
end points of the first route of the incumbent best 
solution are used as the starting points and then all 
the other routes are combined to form the giant tour. 
The steps of this procedure, when the first point of 
the first route is used to construct a network, are 
presented in Figure 3.

Step 1.	 Use the first node of the first route as the  
	 starting point.
Step 2.	 Connect the nearest end points of other  
	 routes with the last node of the first  
	 route. Select the route which has the  
	 nearest end point as the next route. If the  
	 nearest end point is the last point in that  
	 route, reverse the route order.
Step 3.	 Apply Step 2 to the remaining routes by  
	 starting from the selected route in  
	 Step 2.

Figure 3.	 Construction of the cost network 

When we start from the other end point (i.e., the 
last node) of the first route, the order of that route 
is reversed but step 2 and step 3 of Figure 3 are 
similar. This construction obviously ensures that 
the current solution is feasible and hence Dijkstra’s 
algorithm might discover a better one. Note that this 
construction can obviously be started from the end 
points of any route, not necessarily the first one.

The Diversification Procedure (Step 5)

This procedure is used when there is no further 
improvement after all the local searches are 
performed. The idea is to explore other regions of the 
search space that may not have been visited otherwise. 
The incumbent best solution is used as an input for 
the diversification procedure to obtain the new initial 
solution. The idea is to construct a cost network by 
starting from a node which is not the first point of 
any route, when following clockwise direction, and 
also not the end point of any route, when following 
anticlockwise direction. This will ensure that a route 
from this incumbent best solution will be split, a new 
cost network constructed and hence a new solution 
generated. The steps of the diversification procedure 
are presented in Figure 4. In this study, the number 
of diversifications (ND) is set as ND = MIN (100, 2N), 
where N represents the number of customers in a 
given instance.
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RESULT

Computational Experience

The algorithm is programmed in C++ and tested 
to solve VRP instances of Christofides (1979). The 
results and CPU time are given in Table 1 and Table 
2 respectively. Table 1 show that our algorithm 
produces good results. Three solutions for instance 
#1, instance #6 and instance #7 are similar to the 
best known solution. The solution for instance #2 
and instance #3 are close to their corresponding best 
known solution. VNS produces better results when 
compared to the results of Osman (1993), Barbazoglu 

and Ozgur (1999), and Tarantilis et al. (2002). This 
is shown by the number of best solutions obtained 
and the average deviation of the 524.61solutions. In 
terms of CPU time, our algorithm consumes more 
CPU time than Xu and Kelly (1996), Prins (2004) 
and Yu et al. (2009).

CONCLUSIONS

We have put forward an adaptation of the basic 
VNS algorithm to tackle the VRP. This is enhanced by 
the use of additional features which include adopting 
a set of local search procedures including Dijkstra’s 
algorithm and introducing a diversification scheme. 
It was found that our proposed VNS heuristics yield 
competitive results when compared to the best known 
results found in the literature. Finally, this study 
shows that a suitable implementation of VNS can be 
applied successfully to solve the VRP and it can be 
developed other related distribution problems such as 
Multi-depot VRP. Improving the solution quality and 
CPU time will be our concern in the future.
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