Cover Image

Multi Objective Optimization Model of Multi-Pass Turning Operations to Minimize Energy, Carbon Emissions, and Production Costs

Aprilia Dityarini, Eko Pujiyanto, I Wayan Suletra


Environmental, economic, and social are aspects of sustainable manufacturing, and these aspects can be applied to an optimization model in the machining process. One problem of the machining process is an optimization model is needed to determine the optimum cutting parameters. This research develops a multi-objective optimization model that can optimize cutting parameters on a multi-pass turning. Three objective functions are used, such as minimize energy, carbon emissions, and costs. Decision variables are cutting parameters multi-pass turning.  A numerical example is given to implement the model. The problem is solved using GEKKO and  Interior Point Optimizer (IPOPT). The optimization results indicate that the model can be used to optimize the cutting parameters on a multi-pass turning.


Goal Programing; Energy; Carbon Emissions; Production Sustainable Manufacturing


[1] Madan shankar, k., kannan, d., & udhaya kumar, p. (2017). Analyzing sustainable manufacturing practices – a case study in indian context. Journal of cleaner production, 164, 1332–1343. Doi:10.1016/j.jclepro.2017.05.097

[2] Abdul-rashid, s. H., sakundarini, n., raja ghazilla, r. A., & thurasamy, r. (2017). The impact of sustainable manufacturing practices on sustainability performance. International journal of operations & production management, 37(2), 182–204. Doi:10.1108/ijopm-04-2015-0223

[3] Stark, r., seliger, g., & bonvoisin, j. (eds.) (2017). Sustainable manufacturing: challenges, solutions and implementation perspectives. (1 ed.) (sustainable production, life cycle engineering and management). Springer heidelberg. Https://

[4] Smith, l., & ball, p. (2012). Steps towards sustainable manufacturing through modelling material, energy and waste flows. International journal of production economics, 140(1), 227-238.

[5] Bhanot, n., rao, p. V., & deshmukh, s. G. (2017). An integrated approach for analysing the enablers and barriers of sustainable manufacturing. Journal of cleaner production, 142, 4412–4439. Doi:10.1016/j.jclepro.2016.11.123

[6] Manav, o., chinchanikar, s., & gadge, m. (2018). Multi-performance optimization in hard turning of aisi 4340 steel using particle swarm optimization technique. Materials today: proceedings, 5(11), 24652–24663. Doi:10.1016/j.matpr.2018.10.263

[7] Pathiranagama, g. J., & namazi, h. (2019). Fractal based analysis of the effect of machining parameters on surface finish of workpiece in turning operation. Fractals. Doi:10.1142/s0218348x19500439

[8] Krolczyk, g. M., nieslony, p., maruda, r. W., & wojciechowski, s. (2017). Dry cutting effect in turning of a duplex stainless steel as a key factor in clean production. Journal of cleaner production, 142, 3343–3354. Doi:10.1016/j.jclepro.2016.10.136

[9] Bagaber, Salem Abdullah., & Yusoff Ahmad Razlan. (2019). Energy and cost integration for multi-objective optimization in a sustainable turning process. Measurement, 136, 795-810.

[10] Hegab, h. A., darras, b., & kishawy, h. A. (2018). Towards sustainability assessment of machining processes. Journal of cleaner production, 170, 694–703. Doi:10.1016/j.jclepro.2017.09.197

[11] Ibrahim, M. F., & Putri, M. M. (2019). Integrated Green Supply Chain Model to Reduce Carbon Emission with Permissible Delay-in-Payment Consideration. Jurnal Teknik Industri, 20(2), 128-139.

[12] Utama, D. M. (2019). An effective hybrid sine cosine algorithm to minimize carbon emission on flow-shop scheduling sequence dependent setup. Jurnal Teknik Industri, 20(1), 62-72.

[13] Li, Congbo., Tang, Ying., Cui, Longguo., Yi, Q. (2013). Quantitative Analysis of Carbon Emissions of CNC-based Machining Systems. Proceedings of IEEE 10th International Conference on Networking, Sensing and Control, pp. 869-874.

[14] Li, L., Deng, X., Zhao, J., Zhao, F., & Sutherland, J. W. (2018). Multi-objective optimization of tool path considering efficiency, energy-saving and carbon-emission for free-form surface milling. Journal of Cleaner Production, 172, 3311–3322. doi:10.1016/j.jclepro.2017.07.219

[15] Zhang, H., Deng, Z., Fu, Y., Lv, L., & Yan, C. (2017). A process parameters optimization method of multi-pass dry milling for high efficiency, low energy and low carbon emissions. Journal of Cleaner Production, 148, 174–184. doi:10.1016/j.jclepro.2017.01.077

[16] Xiao, Q., Li, C., Tang, Y., Li, L., & Li, L. (2018). A knowledge-driven method of adaptively optimizing process parameters for energy efficient turning, 166, 142-156 Energy. doi:10.1016/

[17] Chen, X., Li, C., Jin, Y., & Li, L. (2018). Optimization of cutting parameters with a sustainable consideration of electrical energy and embodied energy of materials. The International Journal of Advanced Manufacturing Technology,96,1-4. doi:10.1007/s00170-018-1647-0

[18] Kumar, R., Bilga, P. S., & Singh, S. (2017). Multi objective optimization using different methods of assigning weights to energy consumption responses, surface roughness and material removal rate during rough turning operation. Journal of Cleaner Production, 164, 45–57. doi:10.1016/j.jclepro.2017.06.077

[19] Hu, L., Tang, R., Liu, Y., Cao, Y., & Tiwari, A. (2018). Optimising the machining time, deviation and energy consumption through a multi-objective feature sequencing approach. Energy Conversion and Management, 160, 126–140. doi:10.1016/j.enconman.2018.01.005

[20] Widhiarso, W., & Rosyidi, C. N. (2018). Multi objective optimization model for minimizing production cost and environmental impact in CNC turning process. doi:10.1063/1.5024083

[21] Chen, M. -C., & Tsai, D. -M. (1996). A simulated annealing approach for optimization of multi-pass turning operations. International Journal of Production Research, 34(10), 2803-2825.

[22] Lu, Chao., Gao, Liang., Li, Xinyu., & Chen, Peng. (2016). Energy-efficient multi-pass turning operation using multi-objective backtracking search algorithm. Journal of Cleaner Production, 137, 1516-1531. https://doi.org10.1016/j.jclepro.2016.07.029

[23] Abbas, A., Pimenov, D., Erdakov, I., Taha, M., El Rayes, M., & Soliman, M. (2018). Artificial Intelligence Monitoring of Hardening Methods and Cutting Conditions and Their Effects on Surface Roughness, Performance, and Finish Turning Costs of Solid-State Recycled Aluminum Alloy 6061 Сhips. Metals, 8(6), 394. doi:10.3390/met8060394

[24] Radovanović, M. (2018). Multi-objective optimization of multi-pass turning AISI 1064 steel. The International Journal of Advanced Manufacturing Technology. doi:10.1007/s00170-018-2689-z

[25] Marler, R. T., & Arora, J. S. (2004). Survey of multi-objective optimization methods for engineering. Structural and multidisciplinary optimization, 26(6), 369-395. DOI: 10.1007/s00158-003-0368-6

[26] Colapinto, C., Jayaraman, R., & Marsiglio, S. (2015). Multi-criteria decision analysis with goal programming in engineering, management and social sciences: a state-of-the art review. Annals of Operations Research, 251(1-2), 7–40. doi:10.1007/s10479-015-1829-1

[27] Beal, L.D.R., Hill, D., Martin, R.A., and Hedengren, J. D., GEKKO Optimization Suite, Processes, Volume 6, Number 8, 2018, doi: 10.3390/pr6080106

[28] Wächter, A., & Biegler, L. T. (2005). On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1), 25–57. doi:10.1007/s10107-004-0559-y

[29] Putri, S. A., Pujiyanto, E., & Triyono, J. (2019). Optimization of Electroplating Thickness Quality at Hip Joint Implant Using the Taguchi Method. Jurnal Teknik Industri, 20(1), 45-52.

[30] Sundaram, R. M. (1978). An application of goal programming technique in metal cutting. The International Journal Of Production Research, 16(5), 375-382.

Copyright (c) 2020 Jurnal Teknik Industri

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.