Facts and proofs diagnostic test and structural communication grid test on the topic of bacteria: A quantitative analysis

Chaerul Novitasari, Murni Ramli, Puguh Karyanto


Facts and Proofs Diagnostic Test and Structural Communication Grid Test are the tests to train, improve, and assess the level of students’ conceptual understanding and argumentation skills. This research was aimed to analyze the test item of the Facts and Proofs Diagnostic Test and Structural Communication Grid Test about bacteria, constructed as the columnar structured essay. The aspects of the validity, reliability, distinguishing power, and difficulty levels were analyzed using SPSS v.2.0 and Microsoft Excel 2010. Three-hundred and fifty-one students in Sragen Indonesia were chosen as the participants, selected using proportionate stratified random sampling. The schools were selected using cluster sampling. The results showed that two items were eliminated (Q3 and Q6). Revisions for 50 columnar items and five essays have been done. About 35.48% of the items were revised and the rest (64.52%) was accepted. The revised items were six of Facts and Proof Diagnostic test items, and one of SCG item, with 82 columnar items and 18 structural essay items. The finalized instrument can be used to detect students’ conceptual understanding, misconceptions, and argumentation skill.


Facts and proofs diagnostic test; quantitative analysis; structural communication grid test

Full Text:



Abraham, M. R., Grzybowski, E. B., Renner, J. W., & Marek, E. A. (1992). Understanding and misunderstanding of eight graders of five chemistry concepts found in textbooks. Journal of Research in Science Teaching., 29(2), 105–120. https://doi.org/10.1002/tea.3660290203

Amalia, A. N., & Widayati, A. (2012). Analisis butir soal tes kendali mutu kelas XII SMA mata pelajaran ekonomi akuntansi di kota Yogyakarta tahun 2012. Jurnal Pendidikan Akuntansi Indonesia, 10(1), 1–26. https://doi.org/10.21831/jpai.v10i1.919

Arifin, Z. (2011). Evaluasi pembelajaran. Bandung: PT Remaja Rosdakarya.

Ary, D., Jacobs, L. C., & Sorensen, C. K. (2010). Introduction to research in education (Eighth Edi). Belmont, CA. Retrieved from http://www.modares.ac.ir/uploads/Agr.Oth.Lib.12.pdf

Bajpai, R., & Bajpai, S. (2014). Goodness of measurement: Reliability and validity. International Journal of Medical Science and Public Health, 3(2), 112. https://doi.org/10.5455/ijmsph.2013.191120133

Çalik, M., & Ayas, A. (2005). A cross-age study on the understanding of chemical solutions and their components. International Education Journal, 6(1), 30–41. Retrieved from https://files.eric.ed.gov/fulltext/EJ854953.pdf

Clark, I. (2015). Formative assessment: Translating high-level curriculum principles into classroom practice. The Curriculum Journal, 5176, 91–114. https://doi.org/10.1080/09585176.2014.990911

Daşdemİr, İ. (2016). Views of pre-service biology teachers on structured grid, 13(4). https://doi.org/10.12973/tused.10182a

Durmus, S., & Karakirik, E. (2005). A computer assessment tool for structural communication grid. The Turkish Online Journal of Educational Technology, 4(4), 1–4. Retrieved from https://files.eric.ed.gov/fulltext/ED496006.pdf

Eryılmaz, A., Derya, K. gurel, & Mcdermott, L. C. (2015). A review and comparison of diagnostic instruments to identify students’ misconceptions in science. Eurasia Journal of Mathematics, Science & Technology Eduaction, 11(5), 989–1008. https://doi.org/10.12973/eurasia.2015.1369a

Golafshani, N. (2003). Understanding reliability and validity in qualitative research. The Qualitative Report, 8(4), 597–607. Retrieved from http://nsuworks.nova.edu/tqr/vol8/iss4/6

Gronlund, N. E. (1985). Measurement and evaluation in teaching. New York: Mc Milan.

Hasan, S., Bagayoko, D., & Kelley, E. L. (1999). Misconceptions and the certainty of response index (CRI). In IOPScience: Physics Education. https://doi.org/10.1088/0031-9120/34/5/304

Haslam, F., & Treagust, D. F. (1987). Diagnosing secondary students’ misconceptions of photosynthesis and respiration in plants using a two-tier multiple choice instrument. Journal of Biological Education, 21(3), 203–211. https://doi.org/10.1080/00219266.1987.9654897

Johnstone, A. H., Bahar, M., & Hansell, M. H. (2000). Structural communication grids: A valuable assessment and diagnostic tool for science teachers. Journal of Biological Education, 34(2), 87–89. https://doi.org/10.1080/00219266.2000.9655691

Jones, C. A. (2005). Assessment for learning (Vocational). London: Learning and Skills Development Agency.

Khotimah, F. N., Noor, M. F., & Juanengsih, N. (2014). Miskonsepsi konsep archaebacteria dan eubacteria. EDUSAINS, 6(2), 118–128. Retrieved from journal.uinjkt.ac.id/index.php/edusains/article/download/1112/989

Köse, S. (2008). Diagnosing student misconceptions: Using drawings as a research method. World Applied Sciences Journal, 3(2), 283–293. Retrieved from http://idosi.org/wasj/wasj3%282%29/20.pdf

Mohajan, H. K. (2017). Two criteria for good measurements in research: Validity and reliability. Annals of “Spiru Haret”. Economic Series, 17(4), 59. Retrieved from http://anale.spiruharet.ro/index.php/economics/article/view/1746

Muniri, M. (2013). Karakteristik berpikir intuitif siswa dalam menyelesaikan masalah matematika. In Seminar Nasional Matematika dan Pendidikan Matematika (pp. 443–454). Yogyakarta: Jurusan Pendidikan Matematika FMIPA UNY. Retrieved from http://ftik.iain-tulungagung.ac.id/tmt/wp-content/uploads/karakteristik-berpikir-intuitif_9-November-2013.pdf

Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994–1020. https://doi.org/10.1002/tea.20035

Septiana, D., Zulfiani, Z., & Nooradil, M. F. (2014). Identifikasi miskonsepsi siswa pada konsep archaebacteria dan eubacteria menggunakan two-tier multiple choice. EDUSAINS, 6(2), 192–200. Retrieved from journal.uinjkt.ac.id/index.php/edusains/article/download/1151/1023

Simon, S., Erduran, S., & Osborne, J. (2006). Learning to teach argumentation: Research and development in the science classroom. International Journal of Science Education, 28(2–3), 235–260. https://doi.org/10.1080/09500690500336957

Suwandi, S. (2010). Model assesmen pembelajaran. Surakarta, Central Java, Indonesia: Yuma Pustaka.

Tasdere, A., & Ercan, F. (2011). An alternative method in identifying misconceptions: Structured communication grid. Procedia Social and Behavioral Sciences, 15, 2699–2703. https://doi.org/10.1016/j.sbspro.2011.04.173

Tayubi, Y. R. (2005). Identifikasi miskonsepsi pada konsep-konsep fisika menggunakan certainty of response index (CRI). Mimbar Pendidikan, 24(3), 4–9. Retrieved from http://file.upi.edu/Direktori/JURNAL/JURNAL_MIMBAR_PENDIDIKAN/MIMBAR_NO_3_2005/Identifikasi_Miskonsepsi_Pada_Konsep-Konsep_Fisika_Menggunakan_Certainty_of_Response_Index_(CRI).pdf

Treagust, D. F. (1988). Development and use of diagnostic tests to evaluate students ’ misconceptions in science. International Journal of Science, 10(2), 159–169. https://doi.org/10.1080/0950069880100204

Zhou, L., Almutairi, A. R., Alsaid, N. S., Warholak, T. L., & Cooley, J. (2017). Establishing the validity and reliability evidence of preceptor assessment of student tool. American Journal of Pharmaceutical Education, 81(8), 10–20. https://doi.org/10.5688/ajpe5908

DOI: https://doi.org/10.22219/jpbi.v4i3.6166 | Abstract views : 575 | PDF views : 575 |


  • There are currently no refbacks.

Copyright (c) 2018 JPBI (Jurnal Pendidikan Biologi Indonesia)

License URL: https://creativecommons.org/licenses/by/4.0/

View JPBI Stats

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.