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Abstract 

 

 The stability of a four-wheel vehicle is an issue widely discussed. As an effort 
to reduce accidents involving four-wheel vehicles, many studies have been 
conducted to develop a vehicle stability control system. So far, all studies 
utilize vehicle lateral dynamics model as the reference to derive the desired 
states. However, defining the desired states using steady-state cornering 
values may yield instability due to changes in tire cornering stiffness. This 
paper proposes a simple vehicle stability control system that could stabilize 
the vehicle and allow tracking of a desired state under the case of vehicle 
instability due to reduced rear tire cornering stiffness. The controllers are 
designed using Linear Quadratic Regulator (LQR) technique and combined 
with the servo control system to track a reference state. Simulations are 
performed in MATLAB to validate the controller’s performance with and 
without controller constraint. Results show that the controller successfully 
stabilizes the vehicle and tracks the desired state. 

  
 Keywords: vehicle stability control; Linear Quadratic Regulator (LQR) 

 

  
 

1. INTRODUCTION  

 Road safety has remained as one of the most discussed issues, as the World Health 
Organization (WHO) reports that, as of 2021, the number of deaths by road accidents 
reaches 1.3 million per year (1). Furthermore, WHO also reports in the Global Status 
Report on Road Safety 2018 that car occupants (or four-wheeled vehicles in general) 
contribute to 29% of all road traffic fatalities (2). To reduce this number, vehicle stability 
control (VSC) becomes one of the solutions. According to a statistical analysis, VSC can 
minimize vehicle involvement in multivehicle frontal crashes by up to 11.8 percent and 
single-vehicle crashes by up to 52.6 percent (3). Many studies have been done to 
introduce better control systems to improve vehicle yaw stability. A review of various 
vehicle control systems, as well as their benefits and drawbacks, is presented in (4). 
While most control strategies demonstrate robustness against uncertainties owing to 
vehicle characteristics, there are various drawbacks, most of which are linked to online 
optimization, transient response not considered, and implementation difficulty. 
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 In general, there are two types of vehicle stability control, which are active steering 
(AS) and direct yaw control (DYC). Active steering works by providing a corrective angle 
to the tires in response to the driver’s steering command and the vehicle states (4). Many 
control strategies, such as Sliding Mode Control (SMC) (5), 𝐻∞, Model Predictive Control 
(MPC), Quantitative Feedback Theory (QFT), Fuzzy-Logic Control (FLC), and passivity-
based adaptive nonlinear control, have been developed for active steering systems that 
are robust to uncertainty (4). A study in (5) presents a strategy to integrate AS with active 
roll control to improve handling and rollover stability. The active steering control is 
designed using sliding mode control based on the 2-DoF (bicycle) model. Simulation 
performed in CarSim for J-turn and lane change maneuvers shows that the sliding mode 
control can achieve the desired conditions with less control effort. Moreover, the control 
effort is also smoother. The disadvantage of active steering is that it is significantly 
influenced by tire nonlinearity and tire saturation when it comes to tire slip angles (4).  
 Direct yaw moment control (DYC) discusses more on vehicle stability control system. 
DYC works by adding a yaw moment by applying driving or braking torque to the left or 
right tire. Based on the controller output, DYC can be classified as active differential 
braking (ADB) or active torque disturbance (ATD) (4). The disadvantage of ADB is that 
excessive braking slows down the vehicle's speed. When it comes to ATD, if the road 
friction coefficient is too low or the vehicle's velocity is too high, the system may fail to 
provide appropriate yaw moment (4). 
 Several robust control algorithms for DYC systems have also been developed, 
including sliding mode control (SMC) (6,7), Linear Quadratic Regulator (LQR) (8,9), and 
𝐻∞ (10). In addition, DYC takes over a more varying applications, especially in the 
development of stability control for electric vehicle (EV) (6,7,9,10). A study in (6) focuses 
on resolving the chattering problems associated with in-wheel EV by designing a second-
order sliding controller, and simulations using CarSim for double lane change maneuvers 
show that the proposed controller not only improves the stability of the vehicle, but also 
reduces the problem of heavy chattering. Meanwhile, in (7), the authors initially explore 
the influence of variation in loading conditions and the effect of ignoring changes in 
inertial parameters for an ultra-lightweight solar-electric vehicle before proposing a sliding 
mode controller to improve yaw stability. In (8), the authors propose a novel control 
algorithm of DYC based on a hierarchical control strategy in which the upper controller 
uses LQR that contains feedback control and feed-forward control, and simulations 
executed on the Hardware-in-the-Loop (HIL) simulation platform prove that the proposed 
controller is more effective in reducing control delay or overshoot and taking account for 
tire forces. In (9), the authors propose a combined lane keeping and DYC controller for 
intelligent EV using LQR, in which the inherent time delay and data dropouts are 
incorporated into the vehicle's lateral dynamics, and the controller is proven effective 
through simulations using Adams-Simulink joint platform for single and double lane-
change maneuvers. In (10), the authors design a controller for four-wheel independently 
actuated (FWIA) electric ground vehicles considering the tire force saturations using 
linear parameter-varying (LPV) based robust 𝐻∞ controller, and it is successfully 
simulated using CarSim for single lane-changing and J-turn maneuvers with an external 
disturbance in the form of hard brake. 
 Further studies have attempted to combine active steering and DYC to overcome the 
weakness of both controllers and achieve optimum control effort (11,12). In (11), the 
authors combine DYC with active rear steering through an upper and lower-level 
controller. The upper-level controller generates the required yaw moment and rear 
steering angle using sliding mode controller based on a 2-DoF vehicle model while the 
lower-level controller distributes the yaw moment to the four wheels using a braking 
torque distribution scheme. In (12), the authors combine DYC with active front steering 
using fuzzy programming, which produces a weighted combination of the two control 
inputs. Furthermore, the controller utilizes Unscented Kalman Filter (UKF) for the 
estimation of the required vehicle states and parameters from the measured data. Both 
studies prove through simulations that the controllers successfully enhance the handling 
and stability of a vehicle. 
 So far, all studies mentioned above utilize vehicle lateral dynamics to model the 
system and take the steady-state solutions as the reference states. However, the 
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reference states from the steady-state solutions depend on the vehicle parameters such 
as the tire cornering stiffness which heavily affects whether the vehicle is in normal steer, 
understeer, or oversteer (13). A study in (14) shows that a vehicle can become unstable 
when the rear tire cornering stiffness is reduced. There are many factors affecting the 
cornering stiffness of a tire, such as tire size, type, treads (15), inflation pressure (16,17), 
and vertical load (18). 
 This paper aims to design simple controllers to improve the yaw stability under such 
condition. This paper discusses two types of controllers, both designed using LQR. The 
first controller focuses only to stabilize the vehicle handling system. The second controller 
aims to track a reference state, which is the desired yaw rate, and it is designed using the 
servo system to create the closed-loop state space system before applying the LQR 
technique. Furthermore, this paper also provides a new approach to define the desired 
states, using the Ackermann Geometry to calculate the yaw rate at normal steering. 
 The paper is organized as follows: it is started with the first section that outlines the 
introduction, literature survey, and objective, followed by the second section on 
methodology, the third section on simulation results and discussion, before in section four 
the conclusions are explained. 
 
 

2. METHODOLOGY   

 
 
2.1  Modeling of Vehicle Handling 
 To design the controller, the handling system of a four-wheel vehicle must be 
modelled mathematically. This mathematical model is an expansion of the bicycle model, 
with the addition of braking forces as the controller output (11–13). The free-body 
diagram (FBD) of the four-wheel vehicle model is depicted in Error! Reference source 
not found. while the parameters are elaborated in Table 1. 
 
 

 
 

Figure 1. FBD of the four-wheel vehicle model 
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Table 1. Parameters used in vehicle handling system modelling 

Symbol Description 

𝛽 Side-slip angle 

𝛾 Yaw angle 

𝜔 Yaw rate 

𝑚 Vehicle mass 

Θ Vehicle mass moment of inertia about 
the vertical axis 

𝑐𝑠1 Cornering stiffness of front tire 

𝑐𝑠2 Cornering stiffness of rear tire 

𝑎1 Distance between the center of mass 
and front tire axle 

𝑎2 Distance between the center of mass 
and rear tire axle 

𝑣 Velocity of the vehicle 

𝛿 Steering angle 

 
 In the modelling of the handling system, small angle approximation is applied to yaw 

velocity of the vehicle �̇�, the side slip angle 𝛽, and the steering angle 𝛿 (10,13). In 
addition, since the side slip angle is the smaller angle between the velocity vector and the 
vehicle longitudinal axis, the longitudinal velocity may be approximated as: 
 

𝑣 sin 𝛽 = |𝑣|𝛽      (1) 
 

Equation of motion (using small angle approximation for 𝛿 and 𝛽) may be expressed as: 
 

𝑚(𝑣𝜔 + |𝑣|�̇�) = 𝐹𝑦𝑓 + 𝐹𝑦𝑟    (2) 

 
and the angular motion becomes 
 

Θ�̇� = 𝑎1𝐹𝑦𝑓 − 𝑎2𝐹𝑦𝑟 + 𝑀𝑧    (3) 

 
where 𝜔 = �̇�, 𝐹𝑦𝑓 is the sum of front tires lateral forces, which can be expanded to 

 
𝐹𝑦𝑓 = 𝐹𝑦1 + 𝐹𝑦2     (4) 

 
𝐹𝑦𝑟 is the sum of rear tires lateral forces, which can also be expanded to 

 
𝐹𝑦𝑟 = 𝐹𝑦3 + 𝐹𝑦4     (5) 

 
and 𝑀𝑧 is the external yaw moment, which is the control input. 

 
 The tire lateral forces may be expressed as a linear function 
 

𝐹𝑦 = 𝑐𝑠𝑠𝑦      (6) 

 
where 𝑠𝑦 is the lateral slip. Using the small angle approximation, the lateral slip of front 

tire may be expressed as 
 

𝑠𝑦𝑓 = −𝛽 −
𝑎1

|𝑣|
𝜔 +

𝑣

|𝑣|
𝛿     (7) 

 
and the lateral slip of the rear tire may be expressed as 
 

𝑠𝑦𝑟 = −𝛽 +
𝑎2

|𝑣|
𝜔      (8) 
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Deriving the equations of motion yielded a state space formulation (10) expressed by 
 

�̇� = 𝑨𝒙 + 𝑩𝟏𝑢1 + 𝑩𝟐𝑢2    (9) 
 

in which 

𝒙 = [
𝛽
𝜔

]     (10a) 

 

𝑨 = [
−

𝑐𝑠𝑓+𝑐𝑠𝑟

𝑚|𝑣|

𝑎2𝑐𝑠𝑟−𝑎1𝑐𝑠𝑓

𝑚|𝑣||𝑣|
−

𝑣

|𝑣|

𝑎2𝑐𝑠𝑟−𝑎1𝑐𝑠𝑓

Θ
 −

𝑎1
2𝑐𝑠𝑓+𝑎2

2𝑐𝑠𝑟

Θ|𝑣|

]   (10b) 

 

𝑩𝟏 = [
0
1

Θ

]     (10c) 

 

𝑩𝟐 = [

𝑣

|𝑣|

𝑐𝑠𝑓

𝑚|𝑣|
 

𝑣

|𝑣|

𝑎1𝑐𝑠𝑓

Θ

]     (10d) 

 
𝑢1 = 𝑀𝑧     (10e) 

 
𝑢2 = 𝛿     (10f) 

 
𝑀𝑧 can be defined from the longitudinal forces of each tire (10), expressed as: 
 

𝑀𝑧 = ∑ (−1)𝑖𝐹𝑥𝑖
𝑙

2

4
𝑖=1      (11) 

 
 The model also uses the TMEasy tire model to define the tire forces (19). This model 
is used due to its simplicity. This model approximates that the lateral force of the tire is 
proportional to the wheel load and the lateral slip. This relationship can be expressed 
mathematically as 
 

𝐹𝑦 = 𝑘𝐹𝑧𝑠𝑦     (12) 

 
where 𝐹𝑦 is the lateral force of the tire, 𝐹𝑧 is the vertical wheel load, 𝑠𝑦 is the lateral slip, 

and 𝑘 is a constant representing the tire properties such as tire tread size, tread stiffness, 
tire loaded radius, and tire radial stiffness. This relation holds for small slip condition; in 
this condition, all treads stick to the road. The vertical load of each tire can be calculated 
by distributing the vehicle’s weight (13) using the formula 
 

𝐹𝑧𝑓 = (
𝑎2

𝑎1+𝑎2
) 𝑚𝑔    (13) 

 

𝐹𝑧𝑟 = (
𝑎1

𝑎1+𝑎2
) 𝑚𝑔    (14) 

 
where 𝐹𝑧𝑓 and 𝐹𝑧𝑟 are the front and rear vertical wheel load, respectively. 

 
2.2 Controller Design 
 The objective of the controller is to stabilize the vehicle and to track a reference state 
(servo purpose). Since 𝑢1 is the control input, as the first check, the sufficient condition to 

design the controller is the controllability of the pair 𝑨 and 𝑩𝟏. The controllability matrix for 

(𝑨, 𝑩𝟏) may be assessed by looking at the rank of the following matrix (20): 
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[𝑩𝟏 𝑨𝑩𝟏] = [
0 (

𝑎2𝑐𝑠𝑟−𝑎1𝑐𝑠𝑓

𝑚|𝑣||𝑣|
−

𝑣

|𝑣|
)

1

Θ

1

Θ
(−

𝑎1
2𝑐𝑠𝑓+𝑎2

2𝑐𝑠𝑟

Θ|𝑣|
)

1

Θ

]    (15) 

 
 The system will be uncontrollable, i.e., matrix (15) is not full rank, if: 
 

(
𝑎2𝑐𝑠𝑟−𝑎1𝑐𝑠𝑓

𝑚|𝑣||𝑣|
−

𝑣

|𝑣|
)

1

Θ
= 0    (16) 

 

Since 
1

Θ
≠ 0, equation (16) may be written as: 

 
𝑎2𝑐𝑠𝑟−𝑎1𝑐𝑠𝑓

𝑚|𝑣||𝑣|
−

𝑣

|𝑣|
= 0           (17) 

 
However, notice that satisfying this condition makes the state matrix 𝐴 becomes 

𝑨 = [
−

𝑐𝑠𝑓+𝑐𝑠𝑟

𝑚|𝑣|
0

𝑎2𝑐𝑠𝑟−𝑎1𝑐𝑠𝑓

Θ
 −

𝑎1
2𝑐𝑠𝑓+𝑎2

2𝑐𝑠𝑟

Θ|𝑣|

]    (18) 

 
and by noting that it is a lower triangular matrix, the eigenvalues of this matrix are 
 

𝜆1 = −
𝑐𝑠𝑓+𝑐𝑠𝑟

𝑚|𝑣|
, 𝜆2 = −

𝑎1
2𝑐𝑠𝑓+𝑎2

2𝑐𝑠𝑟

Θ|𝑣|
    (19) 

 
which will always have negative real values. Therefore, the system is always stable. 
Since the system is stable even when it is uncontrollable, it can be concluded that the 
system is always stabilizable, which is the necessary and sufficient condition for the 
existence of stabilizing feedback matrix. 
 To stabilize the vehicle, a controller is designed using Linear Quadratic Regulator 
(LQR). Using this technique, the control input may be expressed as 
 

𝒖 = −𝑲𝒙     (20) 
 
in which the matrix 𝐾 is designed to minimize the following performance index 
 

𝐽 = ∫ (𝒙𝑇𝑸𝒙 + 𝒖𝑇𝑹𝒖) 𝑑𝑡
∞

0
     (21) 

 
where 𝑸 and 𝑹 determine the relative importance of the error and the expenditure of the 
control effort (20).  
 In the case of the state space system expressed in equation (9), since the control 
input 𝑢1 corresponds to the matrix 𝑩𝟏, the value of 𝑲 can be determined from 
 

𝑲 = 𝑹−1𝑩𝟏
𝑇𝑷     (22) 

 
and the matrix 𝑷 is determined by solving the Riccati equation (20) defined by 
 

𝑨𝑇𝑷 + 𝑷𝑨 − 𝑷𝑩𝟏𝑹−1𝑩𝟏
𝑇𝑷 + 𝑸 = 𝟎    (23) 

 
 In most situations, however, stabilizing the vehicle is not sufficient to ensure the 
safety of the driver and/or passengers. Even though a vehicle is stabilized, there are still 
possibilities that the vehicle experience oversteering, which is still considered dangerous. 
To further correct this situation, a second type of controller is designed with the goal of 
not only to stabilize, but also to track desired states associated with neutral steer 
condition. 
 The desired states can be derived using the Ackermann Geometry, as it reflects the 
condition of neutral steer during cornering (13). The schematic of Ackermann Geometry is 
depicted in Figure 1. As there are two states involved in the state space system in 
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equation (10a), which are the slip angle 𝛽 and the yaw rate 𝜔, analytically the desired 
value for both states can be found using the Ackermann geometry. However, only the 
yaw rate 𝜔 is used as the desired state for the controller since a servo system can only 
accept one desired state. 

 
Figure 1 Ackermann geometry of a bicycle model 

 
Using trigonometry on the steering angle 𝛿, 
 

tan 𝛿 =
𝑎1+𝑎2

𝑟
       (24) 

 
 In the mathematical modelling of vehicle handling system, again small angle 
approximation is used for the steering angle 𝛿. For consistency, the same approximation 
applies to the Ackermann geometry. Applying the small angle approximation yields 
 

tan 𝛿 ≈ 𝛿 =
𝑎1+𝑎2

𝑟
           (25) 

 

𝑟 =
𝑎1+𝑎2

𝛿
      (26) 

 
 The cornering radius 𝑅, which is the distance from the curvature center point to the 
vehicle’s center of mass, based on Figure 1, can be calculated as 
 

𝑅 = √𝑟2 + 𝑎2
2 = √(

𝑎1+𝑎2

𝛿
)

2

+ 𝑎2
2   (27) 

 

𝑅 = √(𝑎1+𝑎2)2+𝑎2
2𝛿2

𝛿2 =
1

𝛿
√(𝑎1 + 𝑎2)2 + 𝑎2

2𝛿2    (28) 

 
The desired yaw rate is found from the vehicle’s kinematics, expressed as 
 

𝜔 =
𝑣

𝑅
       (29) 

 

𝜔 =
𝑣𝛿

√(𝑎1+𝑎2)2+𝑎2
2𝛿2

      (30) 

 
 To track the desired states, the controller was designed using servo control 
combined with LQR (20). Since the servo control only allows one reference state, the 
desired yaw rate expressed in equation (30) is used as the reference state. The system 
still follows from equation (9) and 
 

𝑦 = 𝑪𝒙             (31) 
 
where 
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𝐶 = [0 1]         (32) 

 

Taking the yaw rate 𝜔 as the desired state yields 𝑦𝑑 = 𝜔𝑑. The error signal is then 
defined as 

𝑒(𝑡) = 𝑦𝑑 − 𝑦(𝑡) = 𝑦𝑑 − 𝑪𝒙     (33) 
 
The integral of error is defined as 
 

𝑣(𝑡) = ∫ 𝑒(𝑡)
𝑡

0
      (34) 

 
�̇�(𝑡) = 𝑒(𝑡) = 𝑦𝑑 − 𝑪𝒙(𝑡)         (35) 

 
Combining the dynamics of 𝒙 and 𝑣, the augmented state space system becomes 
 

[
�̇�
�̇�

] = [
𝑨 𝟎

−𝑪 0
] [

𝒙(𝒕)

𝑣(𝑡)
] + [

𝑩𝟏

0
] 𝑢1 + [

𝑩𝟐

0
] 𝑢2 + [

𝟎
1

] 𝑦𝑑   (36) 

 
 Let us define the control input 𝑢1 as 
 

𝑢1 = −𝑲𝟏𝒙(𝑡) − 𝐾2𝑣(𝑡)          (37) 
 
in which 𝑢1 is a scalar, 𝑲𝟏 is a 1 × 2 feedback matrix, and 𝐾2 is a scalar feedback term. 
The resulting closed loop system will be 
 

[�̇�
�̇�

] = [
𝑨 − 𝑩𝟏𝑲𝟏 −𝑩𝟏𝐾2

−𝑪 0
] [

𝒙(𝒕)

𝑣(𝑡)
] + [

𝑩𝟐

0
] 𝑢2 + [

𝟎
1

] 𝑦𝑑   (38) 

 
It may be rewritten as 
 

�̇̂� = (�̂� − �̂�𝟏𝑲)�̂� + �̂�𝟐�̂�𝟐    (39) 
 
in which 

�̂� = [
𝒙(𝒕)

𝑣(𝑡)
]     (40a) 

 

�̂� = [
𝑨 𝟎

−𝑪 0
]       (40b) 

 

�̂�𝟏 = [
𝑩𝟏

0
]     (40c) 

 
𝑲 = [𝑲𝟏 𝐾2]       (40d) 

 

�̂�𝟐 = [
𝑩𝟐 𝟎
0 1

]        (40e) 

 

�̂�𝟐 = [
𝑢2

𝑦𝑑
]      (40f) 

 
When the servo control is combined with the LQR, equation (36) becomes the 

augmented state space that is the input for the LQR. 
The yaw moment that the controller can provide has a limit. Since the yaw moment is 

created by uneven braking forces, there is a maximum braking force value depending on 
the tire friction force, which is quantified by the friction coefficient. It is necessary that the 
braking force on a tire does not exceed the tire friction force such that no longitudinal slip 
occurs. This constraint was later added into the simulation for the reference-tracking 
controller to show how the constraint may affect the system. Let the upper and lower limit 
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of the control input be denoted as 𝑢𝑚𝑎𝑥 = 𝑢∗ and 𝑢𝑚𝑖𝑛 = −𝑢∗, respectively. The controller 
with the constraint imposed may be expressed as 
 

𝑢1 =
𝑢1, 𝑖𝑓 |𝑢1| < 𝑢∗

𝑢∗, 𝑖𝑓 |𝑢1| > 𝑢∗       (41) 

in which 𝑢1 is given by (37). 
The simulation was performed using MATLAB, with the parameters listed in Table 2. 

As for the rear tire cornering stiffness, the multiplier constant 𝑘𝑟 was set as two step 
functions, as seen in 

Figure 2. This condition shows that initially, the value of 𝑘𝑟 is the same as 𝑘𝑓 in Table 

2, or in other words, the front and rear tires are identical. However, at 𝑡 = 5 seconds, the 

value of 𝑘𝑟 drops to just 0.4 times its initial value, making the vehicle inherently unstable. 
At this state, the controller should be triggered to provide control input to the handling 
system, and the simulation should show how the controller prevents instability, either by 
stabilizing the yaw rate or by tracking the desired yaw rate. 

 

 
 

Figure 2. Rear tire cornering stiffness multiplier 

 
 
 

Table 2. Simulation Parameters 

Symbol Description Value 

𝑚 Mass of the vehicle 1600 kg 

Θ Mass moment of inertia of the vehicle 1058.57 kg.m2 

𝑘𝑓 Front tire stiffness multiplier constant 14.33 

𝑎1 Distance between front tire axle and center 
of mass 

1.2 m 

𝑎2 Distance between rear tire axle and center of 
mass 

1.45 m 

𝑣 Velocity of the vehicle 80 km/h 
(22.22 m/s) 

𝛿 Constant steering angle 0.5 rad 

 
 

3. RESULTS AND DISCUSSIONS 
3.1 Controller Without Constraint 
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 Prior to designing the controller, the controllability and/or stabilizability of the state 
space system were checked. The sufficient condition was that the system is stabilizable. 
Once this condition is ensured, the controllers could be designed. All controllers were 
designed using LQR. 
 The controller was also designed so that it only produces control input to the vehicle 
system when the yaw rate exceeds a tolerance of 5% of the desired yaw rate. The value 
of 5% was chosen arbitrarily for this simulation, however, in a real-life application, this 
number can be tuned according to the driver’s convenience.  
 For the stabilizing controller, the simulation result can be seen in Figure 3. The 
system becomes unstable after 5 seconds, indicated by the red dashed curve 
approaching a large value. The simulation also shows that the controller can stabilize the 
system, indicated by the black curve approaching a steady-state value. This value, 
however, is still higher than the desired yaw rate, which is the yaw rate when the vehicle 
is in normal steer. This means that the vehicle is still in oversteer. Thus, in real life 
application, there are still some risks attributed to this controller. The yaw moment 
generated by the controller can be seen in Figure 4. For this controller, the yaw moment 
generated by the controller rises to a certain value and then stays constant for the rest of 
the simulation time. 

 
Figure 3. Simulation result for stabilizing controller with no constraint 

 
 

Figure 4. Yaw moment generated by stabilizing controller with no constraint 

 



JEMMME (Journal of Energy, Mechanical, Material, and Manufacturing Engineering) 
Vol. 7, No. 1, 2022  doi: 10.22219/jemmme.v7i1.23225 

Mulia | On Vehicle Stabilization Under Saturation Constraints by Linear Quadratic … 36 

 

 For the reference-tracking controller, the simulation result can be seen in Figure 5. 
With the addition of servo system, the controller now provides a control input that makes 
the yaw rate approaches the desired yaw rate, although achieving it at a slower rate 
compared to the stabilizing controller. The system becomes a non-minimum phase 
system indicated by the existence of “overshoot” before both states reach a steady state 
value. The yaw moment produced by this controller can be seen in Figure 6. For this 
controller, the yaw moment rises to a maximum value and then slowly reducing to a 
certain steady-state value. 

 

 

Figure 5. Simulation result for reference-tracking controller with no constraint 

 

Figure 6. Yaw moment generated by reference-tracking controller with no constraint 

 
3.2 Controller with Constraint 
 To apply the yaw rate constraint, additional lines of codes were added into the 
simulation that represents the saturation function given by (22). For the reference-tracking 
controller, there are several possible scenarios depending on the value of the yaw 
moment limit. When the limit is too low, the controller will be unable to produce the 
required yaw moment to track the reference state. There is also a scenario when the limit 
is slightly below the maximum yaw moment normally produced by the controller without 
constraint, however, the controller is still able to track the desired yaw rate. Figure 7 
shows the simulation result for such case, and the yaw moment generated by the 
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controller can be seen in Figure 8. The red dashed line in Figure 8 indicates the yaw 
moment limit. When the yaw moment reaches the limit, the yaw moment value will remain 
constant for a certain period. This yaw moment, despite not as high as the maximum 
value for the case without constraint, is still enough to bring the yaw rate to the desired 
value. As the yaw rate is brought closer to the desired value, the required yaw moment 
decreases. 

 

Figure 7. Simulation result for reference-tracking controller with constraint 

 

Figure 8. Yaw moment generated by reference-tracking controller with constraint 

 

4. CONCLUSION 
This paper proposes a vehicle stability control system to provide handling stability in 

cases of instability due to a sudden tire cornering stiffness change. Two types of 
controllers are designed in this paper, one to stabilize the vehicle and the second to track 
a desired yaw rate value based on the Ackermann Geometry. The controllers are 
successfully designed using LQR technique and combined with servo control system for 
reference-tracking. The controller’s performance is simulated using MATLAB for cases 
with and without a controller constraint. 

Simulation results show that the controllers successfully accomplish its purpose to 
stabilize and/or track the desired yaw rate. For the stabilizing controller, simulation results 



JEMMME (Journal of Energy, Mechanical, Material, and Manufacturing Engineering) 
Vol. 7, No. 1, 2022  doi: 10.22219/jemmme.v7i1.23225 

Mulia | On Vehicle Stabilization Under Saturation Constraints by Linear Quadratic … 38 

 

show that the states approach a steady state value which validates the controller’s 
performance. However, the yaw rate is still above that of the normal steer value. By 
designing the reference-tracking controller, the yaw rate may approach the desired value. 
Furthermore, the reference-tracking controller allows for controller constraint due to tire 
friction force. 

As a future work, fine tuning of the controller parameters such as the desired state 
tolerance limit needs to be carried out. Furthermore, laboratory experiments with real or 
model vehicles need to be carried out to quantify the controller constraint and to validate 
the controller’s performance. 
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