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Abstract 

 

 Simulated annealing is an optimization method adapted from the annealing 
process. The optimization process using simulated annealing method is done 
by mapping the elements of physical coolant process onto the elements of 
optimization problem. This method uses local neighborhood search to find 
solutions, meaning it searches around it for answers itself and takes another 
solution based on everything around it. The simulated annealing method has 
been used successfully for the optimization process in the continuous case 
(Himmelblau’s function) and combinational case (Quadratic Assignment 
Problem or QAP). Based on the optimization results (global minima) for the 

Himmelblau's function, the points 𝑥𝑓 = 3.584 and 𝑦𝑓 =  −1.845  are obtained 

with objective function 𝑧 = 0. The optimal solution for the eight departmental 
arrangements is F, E, A, G for the bottom floor and H, D, C, B for the top floor, 
this arrangement produces an optimal total cost of 214. The simulated 
annealing method accepts an uphill move (worse move) by considering the 
probability, in this way we will not be trapped in the local minima position. 
These four search space variables 𝑀, 𝑁, 𝑇0 and 𝛼 determine the performance 
of the simulated annealing method, we can adjust them according to the 
optimized case. 
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1. INTRODUCTION  

 In the realm of optimization algorithms, the pursuit of efficiency and effectiveness 
stands as an enduring objective. Simulated Annealing (SA), inspired by the annealing 
process in metallurgy, has traversed decades of research and adaptation to become a 
foundational technique in the field. Originally conceived by Kirkpatrick et al. in 1983 (1), 
SA has recently experienced a resurgence of interest, driven by the need to address 
contemporary optimization challenges across a spectrum of domains. This revival is 
underscored by novel variants, advanced strategies, and the integration of modern 
computing capabilities (2)(3). 
 In the ever-evolving landscape of optimization, it is imperative to appreciate the 
substantial body of work that has contributed to the refinement and applicability of SA. 
Recent years have seen significant progress in understanding and extending the 
algorithm's capabilities. These advancements span various disciplines, showcasing SA's 
versatility. For instance, Aydin and Fogarty's work in 2004 has explored the intricacies of 
SA in combinatorial optimization, enhancing its effectiveness in solving complex problems 
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(2). Ahmed et.al. in 2023 has leveraged SA for fine-tuning machine learning models, 
introducing an intersection between optimization and artificial intelligence (3). 
 Moreover, the algorithm's applicability has transcended traditional boundaries. In 
computational chemistry, Agostini et.al. in 2006 has illuminated SA's contributions to the 
study of complex molecular systems, underscoring its utility in understanding real-world 
phenomena (4). Xu et.al. in 2011 has introduced adaptive variations of SA to address 
multimodal optimization problems, further expanding the algorithm's reach across diverse 
problem domains (5). 
 As computational power continues to grow, the scalability and parallelizability of SA 
have gained prominence. Mu et.al. in 2019 has explored parallel SA algorithms, making it 
more amenable to solving large-scale optimization problems in distributed computing 
environments (6). In the context of wireless sensor networks, Osamy et.al. in 2020 has 
delved into SA-based routing algorithms, demonstrating its efficacy in resource-
constrained, wireless communication scenarios (7). 
 Furthermore, SA has found its place in the ever-expanding world of cloud computing. 
We et.al. in 2012 has employed SA for energy-efficient scheduling in cloud data centers, 
aligning optimization with green computing principles (8). Zhang et.al. in 2021 has 
scrutinized SA's performance in solving the Traveling Salesman Problem, showcasing its 
adaptability and competitiveness (9). In the context of cloud computing environments, 
Tanha et.al. in 2021 has employed SA heuristics for job scheduling, addressing the 
challenges posed by the dynamic and resource-constrained nature of cloud systems (10). 
 The optimization process using SA method is done by mapping the elements of 
physical coolant process onto the elements of optimization problem. This method uses 
local neighbourhood search to find solutions, meaning it searches around it for answers 
itself and takes another solution based on everything around it.  This process is often 
referred to as a probabilistic metaheuristic that means it counts on probabilities and 
randomness. 
 The SA method allows some uphill moves or worse solutions to avoid getting stuck 
in the local minima position. The method used to accept an uphill move is to use 
probability, which is to compare equation (1) with a random number U (0.1). If the random 
number is smaller (the probability of the worse solution is high) then the uphill move is 
accepted, if the random number is higher, then the uphill move is not carried out. In 
equation (1) 𝑓(𝑥𝑡)  is an objective function evaluated in new move and 𝑓(𝑥𝑖)  is an 
objective function at current solution while 𝑇𝑡 is temperature at the current location m. 
When m becomes larger (toward the end process or T become smaller) so the change in 
accepting uphill move is reduced. 
 

exp (− (
𝑓(𝑥𝑡)−𝑓(𝑥𝑖)

𝑇𝑡
))      (1) 

 
 The primary objective of this study is to demonstrate the versatility and efficacy of 
the Simulated Annealing (SA) algorithm in addressing a diverse range of optimization 
challenges. Specifically, we aim to showcase SA's ability to efficiently navigate complex, 
multi-modal solution spaces in continuous optimization problems like Himmelblau's 
Function, while also highlighting its adaptability in solving combinatorial optimization 
problems such as the Quadratic Assignment Problem (QAP). By achieving success in 
both domains, our research seeks to provide a unified framework that underscores SA's 
applicability across a spectrum of optimization problems, offering valuable insights for 
researchers and practitioners facing real-world decision-making complexities. 
 

2. CASE STUDIES 
2.1  Himmelblau’s Function 
 Himmelblau’s function is a multi-modal function, used to test the performance of 
optimization algorithms. This function can be written with the following equation, where x 
and y lie between -6 and 6: 
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𝑓(𝑥, 𝑦) = (𝑥2 + 𝑦 − 11)2 + (𝑥 + 𝑦2 − 7)2     (2) 

 

This function has four identical global minima at the point, 
➢ 𝑓(3.0, 2.0) = 0.0, 
➢ 𝑓(-2.8051, 3.1313) = 0.0 

➢ 𝑓(−3.7793, -3.2891) = 0.0 

➢ 𝑓(3.5844, -1.8451) = 0.0 
We try to use the simulated annealing method to find the global minima of Himmelblau’s 
function. 
 
2.2 Quadratic Assignment Problem (QAP) 
 Quadratic Assignment Problem (QAP) is one type of problem determining the 
location of a number of facilities to a number of specific points. Among these facilities, 
there is a close relationship that can be assumed to be a flow of people or material. So 
that facilities that have high close relationship, these facilities need to be placed in 
locations adjacent anyway. Thus, the purpose of the problem to minimize the cost of 
displacement can be achieved. 
 For example, eight departments in one company are to be placed in eight locations 
with four in the top floor and four in the bottom floor. The objective is to minimize costs 
between the placed departments (the maximum cost cannot exceed 220). The cost is 
calculated by equation (3), and the total cost is the sum of all costs for every department. 
The schematic problem can be seen in figure 1. The detail of flow and distance value 
presented in table 1 and 2. 
 

𝐶𝑜𝑠𝑡 = 𝐹𝑙𝑜𝑤 ∗ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒    (3) 

 

 
Fig. 1. Quadratic assignment problem schematic 

 
Table 1. The distance between department 

Dept. A B C D E F G H 

A 0 1 2 3 1 2 3 4 
B 1 0 1 2 2 1 2 3 
C 2 1 0 1 3 2 1 2 
D 3 2 1 0 4 3 2 1 
E 1 2 3 4 0 1 2 3 
F 2 1 2 3 1 0 1 2 
G 3 2 1 2 2 1 0 1 
H 4 3 2 1 3 2 1 0 
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Table 2. The flow between department 

Dept. A B C D E F G H 

A 0 5 2 4 1 0 0 6 
B 5 0 3 0 2 2 2 0 
C 2 3 0 0 0 0 0 5 
D 4 0 0 0 5 2 2 10 
E 1 2 0 5 0 10 0 0 
F 0 2 0 2 10 0 5 1 
G 0 2 0 2 0 5 0 10 
H 6 0 5 10 0 1 10 0 

 

3. METHODS  

Select x0, T0, 

M, N and α 

Set x1 = x0

       T1 = T0

        xf = x0

For each m For each n xt = k*xi

If f(xt)   f(xi) 

xi+1 = xt

If U(0,1)   

equation (1)

Yes

No

xi+1 = xt

xi+1 = xi

Yes

No

If f(xi+1)   

f(xf)

xf = xi+1 

n = n + 1

Yes

No

If n < N 

If m < M

No

Yes

Tt+1 = α*Tt 

m = m + 1

End, return xf

Yes

No

 
Fig. 2 Flow chart of simulated annealing 

 
 The search space notations in figure 2 are 𝑥0 for initial solution, 𝑥𝑖 for solution i, 𝑥𝑓 

for final solution and 𝑓(𝑥𝑖) for objective function evaluated in 𝑥𝑖. The notations for 
simulated annealing method are 𝑇0 for initial temperature, 𝑇𝑡 for temperature at stage t, 𝑇𝑓 

for final temperature, 𝛼 for cooling parameter that cool down the temperature, M for the 
number of temperature, N for the number of move or the number of neighborhood at the 
temperature 𝑇𝑡, and k for the type of move operator. 
 The procedure for performing optimization with the simulated annealing method is as 
follows: 

1. Set 𝑇0, 𝑀, 𝑁, 𝛼 and type of move operator k. 
2. Start from m = 1 (m means counter for M) and set initial value. 
3. Start from random point in the search space, 𝑥𝑖 and initial solution. 
4. Move using move operator to another location, 𝑥𝑡. 
5. Look around the neighborhood or point around your location and move to one of 

them, n = 1. 
6. Check if the objective function at the current point is better, 

a. If yes, teke 𝑥𝑖+1 = 𝑥𝑡. 
b. If no, take a random number and check if the random number is less than 

equation (1). If it less, take 𝑥𝑥+1 = 𝑥𝑡 and if it greater don’t take 𝑥𝑡 and stay 
where we are, and look for another point (n = n + 1) 

7. Do step 4 to 6 for N times (inner looping) 
8. After we do it N times, we increase 𝑚 = 𝑚 + 1 and reduce the temperature by 𝛼, 

𝑇𝑡+1 = 𝛼 ∗ 𝑇𝑡. We repeat this step until M times. 
9. Get the solution, 𝑥𝑓. 
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4. RESULT AND DISCUSSION  
4.1 Himmelblau’s Function 
 To find the global minima in Himmelblau’s function using the simulated annealing 
method, we must follow the nine steps outlined in section 3. For this case, we can solve it 
in the following way: 
1. Set 𝑇0 = 1000, 𝑀 = 300, 𝑁 =  15, 𝛼 = 0.85 and type of move operator k = 0.1. 

Basically, the use of move operators is optional, in this case move operators are 
used to produce smoother steps. 

2. Start from m = 1 (m means counter for M) and set the initial value 𝑥0 = 0, 𝑦0 = 0. 

3. Start from initial solution 𝑥𝑖 = 𝑥0,  𝑦𝑖 = 𝑦0. 
4. Move using move operator and random number to another location, 𝑥𝑡 and 𝑦𝑡. As we 

know that the random number function gives values between 0 and 1, the move 
operator here is used to refine the steps generated from the random number. 

5. Look around the neighborhood or point around current location and move to one of 
them, n = 1. 

6. Check if the objective function at the current point is better, 
a. If yes, take 𝑥𝑖+1 = 𝑥𝑡 and 𝑦𝑖+1 = 𝑦𝑡. 
b. If no, take a random number and check if the random number is less than 

equation (1). If it less, take 𝑥𝑥+1 = 𝑥𝑡, 𝑦𝑖+1 = 𝑦𝑡 and if it greater don’t take 𝑥𝑡 

and 𝑦𝑡, and stay where we are, and look for another point (n = n + 1) 
7. Do step 4 to 6 for 15 times (inner looping) 
8. After we do it 15 times, we increase 𝑚 = 𝑚 + 1 and reduce the temperature by 𝛼 =

0.85, 𝑇𝑡+1 = 𝛼 ∗ 𝑇𝑡. We repeat this step until 300 times (we have 300 temperature 
positions). 

9. Get the solution, 𝑥𝑓 and 𝑦𝑓. 

 
All of the procedures that have been explained are coded using python with the numpy 
library for calculations and the matplotlib library for the calculation result plot. Here are the 
results of the calculation. 
 

 
Fig. 3. Results for Hinnelblau’s function case 

 
 Figure 3 shows the results of the global minima search of the Himmelblau's function 
using the simulated annealing method. For the initial solution with 𝑥0 = 0  and 𝑦0 = 0 
produces the objective function z = 170, and for the objective function z = 0 is obtained 
from the optimal points 𝑥𝑓 = 3.584 and 𝑦𝑓 =  −1.845. The results of this calculation can be 

validated with an analytical solution from Himmelblau's function that has 4 solutions or 
global minima positions. The above results also show that there are several local minima 
in the 𝑧 𝑣𝑠 𝑇 graph, with the simulated annealing method that allows uphill move, we will 
not be trapped in the local minima position. To understand more about the algorithm of 
this method, we can change the optimization parameters, for example we change M = 30 
and produce the following output. 
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Fig. 4. Result for modified Himmelblau’s function case 

  
 Figure 4 shows global Minima search results for modified Himmelblau's case with 
𝑀 = 30. The final result of this calculation is 𝑧 = 88.24  with position xf = 1.2  and 𝑦𝑓 =

1.762. When the number of temperatures M is changed, the final result will also change 
because M determines how many temperature positions will be analyzed, the less M then 
the calculation becomes inaccurate, like the sample results from Figure 6 above. 
Basically, there are still some more variables that can be changed to see the effect on the 
calculation results, such as 𝑁, 𝑇0  and 𝛼. These four search space variables determine the 
performance of the simulated annealing method.  
 
3.2 Quadratic Assignment Problem (QAP) 
 To find a solution from QAP using the simulated annealing method, we must follow 
the nine steps outlined in section 3. For this case, we can solve it in the following way: 

1. Set 𝑇0 = 1500, 𝑀 = 250, 𝑁 =  20, 𝛼 = 0.9. For this case we don't need an move 
operator, because the type of the case is a combinational case so the random 
number used to make the step must be an integer. 

2. Start from m = 1 (m means counter for M) and set the initial solution for department 
arrangement, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝐵, 𝐷, 𝐴, 𝐸, 𝐶, 𝐹, 𝐺, 𝐻. 

3. Calculate the objective function for initial solution (use equation 3) 
4. Move using integer random number. Two sets of random integer number (1 to 8) is 

used to construct a new arrangement. New arrangement arrangements are obtained 
by swapping positions obtained from integer random numbers. 

5. Check if the objective function at the current arrangement is better, 
a. If yes, take the new arrangement become the solution. 
b. If no, take a random number and check if the random number is less than 

equation (1). If it less, the new arrangement become the solution and if it 
greater don’t take it, and stay where we are, and look for another arrangement 
(n = n + 1) 

6. Do step 4 to 6 for 20 times (inner looping) 
7. After we do it 20 times, we increase 𝑚 = 𝑚 + 1 and reduce the temperature by 𝛼 =

0.9, 𝑇𝑡+1 = 𝛼 ∗ 𝑇𝑡. We repeat this step until 250 times (we have 250 temperature 
positions). 

8. Get the solution for the new department arrangement.  
All the procedures that have been explained are coded using python with the numpy 
library for calculations, the matplotlib library for plot calculation results and the pandas 
library for data structure. Here are the results of the calculation. 
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Fig. 5. Result for QAP 

  
 Figure 5 represents the results of calculations in the form of objective functions (total 
cost) and temperature (T). Initial arrangements B, D, A, E, C, F, G, H produce total cost 
336 while optimal arrangements F, E, A, G, H, D, C, B produce total cost 214. In Figure 7 
we can also see that the calculation results of the objective function (total cost) fluctuate 
at high temperatures (initial search). This behavior occurs because the greater T in 
equation (1), the probability of receiving an uphill move is also large, so that at the 
beginning of the search process fluctuations will occur. Because QAP is a combinational 
type of case, there are a number of arrangement solutions that meet the requirements, 
table 3 below summarizes some optimal arrangement options that meet the requirements 
after several trials. 
 

Table 3. The optional solution for QAP 

Bottom floor Top floor Total Cost 

F E A G H D C B 214 
B A E C D H G F 214 
G H D F E A B C 214 
G H D B F E A C 218 
C D H F B A E G 218 
F E A C G H D B 218 
A C E B D H G F 220 

 
 To better understand the procedure of how simulated annealing solves a 
combinational case like QAP, we can change the variables M = 10 and N = 1, this means 
we only do one search in one step temperature. Table 4 below shows the calculation 
results with the M and N variables that have been changed. 
 In Table 4, we can see the process of finding a solution of this case using simulated 
annealing. For example, from the initial arrangement to arrangement 1 there is an 
exchange of positions between A and E, with this exchange the cost will also change. 
This process continues until the calculation has reached the specified limit. On the step of 
arrangement 3 to arrangement 4, there is an uphill move where total cost arrangement 4 
is greater than total cost arrangement 3. This behavior can occur because the probability 
of arrangement 4 is considered high so the calculation accepts the worse move. 
 

Table 4. The results for modified QAP 

 Bottom floor Top floor Total Cost 

Initial arrangement B D A F C E G H 336 
Arrangement 1 B D E F C A G H 330 
Arrangement 2 G D E F C A B H 322 
Arrangement 3 G D E B C A F H 318 
Arrangement 4 G F E B C A D H 326 
Arrangement 5 G C E B F A D H 292 
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Arrangement 6 G C E F B A D H 296 
Arrangement 7 H C E F B A D G 254 
Arrangement 8 G C E F B A D H 296 
Arrangement 9 G C E F B H D A 254 

 

4. CONCLUSION 
 The simulated annealing method has been used successfully for the optimization 
process in the continuous case (Himmelblau’s function) and combinational case 
(Quadratic Assignment Problem or QAP). Based on the optimization results (global 
minima) for the Himmelblau's function, the points 𝑥𝑓 = 3.584 and 𝑦𝑓 =  −1.845  are 

obtained with objective function 𝑧 = 0. This result is valid and can be validated with 
analytical solutions from Himmelblau's function which has 4 solutions or global position 
minima. The optimal solution for the eight departmental arrangements is F, E, A, G for the 
bottom floor and H, D, C, B for the top floor, this arrangement produces an optimal total 
cost of 214. For this QAP case there are several solutions for the arrangement as in table 
3. The simulated annealing method accepts an uphill move (worse move) by considering 
the probability, in this way we will not be trapped in the local minima position. These four 
search space variables 𝑀, 𝑁, 𝑇0  and 𝛼 determine the performance of the simulated 
annealing method, we can adjust them according to the optimized case. 
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