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Abstract 

 
As the leading global producer of palm oil, Indonesia encounters substantial 
environmental challenges arising from the waste generated by empty palm oil 
fruit bunches (EPOFB). This research aims to develop an accurate Artificial 
Neural Network (ANN) model to predict the tensile strength of EPOFB fiber-
reinforced composites. The method involves two types of ANN, namely Radial 
Basis Function (RBF) and Backpropagation, with testing using variations in 
immersion time, volume fraction, and length of EPOFB fibers. The research 
results show that both ANN models can predict tensile strength with a Mean 
Absolute Error (MAE) below 10%. However, the Backpropagation ANN shows 
superior performance with a training MAE of 0.0078 and a testing MAE of 0.45, 
compared to the RBF ANN, which has a training MAE of 0.371 and a testing 
MAE of 0.53. In conclusion, ANN Backpropagation is superior in prediction 
accuracy and characterization efficiency of EFB fiber-reinforced composites, 
offering an economical solution and supporting sustainable palm oil waste 
management. 

  
 Keywords: Artificial Neural Network (ANN); Backpropagation; Palm Oil Empty 
 Bunches (POEB); Radial Basis Function (RBF)  

 

  
 

1. INTRODUCTION  

 Indonesia is one of the world's leading producers of palm oil, producing millions of tons 
of palm oil every year (1). However, this abundance of palm oil production also causes 
significant environmental problems, especially from the solid waste produced, such as 
empty oil palm fruit bunches (EFB) (2). This waste is often not utilized optimally and only 
accumulates rubbish in the environment. One potential solution to overcome the problem 
of EFB waste is to use it as a reinforcing material in making composites (3). Palm oil empty 
fruit bunch fiber-reinforced composites have great potential due to their excellent 
mechanical properties and abundant availability (4). However, composites reinforced with 
empty fruit bunch fibers generally have much lower mechanical strength compared to 
composites reinforced with synthetic fibers (5,6). Furthermore, the characterization of these 
composites often poses challenges, primarily due to the high costs and time required for 
laboratory testing. One way to reduce characterization costs is through the use of prediction 
techniques (7–9). In addition, composites reinforced with empty fruit bunch fibers have also 
been researched for applications such as ship hulls and sound-dampening systems (10–
12). However, studies on using empty fruit bunch fibers for ship hull applications have 
shown that it is not feasible because the mechanical strength does not meet the required 
standards. 
 On the other hand, the rapid development of artificial intelligence (AI) technology offers 
various innovative solutions in the prediction field. One prominent AI method is Artificial 
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Neural Network (ANN). ANN has been used in various fields to predict various parameters 
with high accuracy, including in health, finance, and engineering (13–18). In materials, ANN 
has also been used for tensile strength prediction for friction stir welding aluminum alloy 
and produces good prediction results with an error of only 1.13% (19). However, ANN has 
been widely applied in various fields, and its application for the characterization of palm oil 
empty fruit bunch fiber composite materials still needs to be improved. Research on the 
use of ANN to predict the characterization of composite materials is still rare, so it needs to 
be developed, which is expected to reduce the costs and time required for conventional 
composite characterization. 
 This research includes the development of an accurate ANN model to predict the 
tensile strength of palm oil empty fruit bunch fiber-reinforced composites. In addition, this 
research provides an alternative composite characterization method that is more efficient 
and economical. By increasing the added value of empty palm oil bunch waste as a 
composite reinforcement material, this research contributes to more sustainable palm oil 
waste management. Thus, this research offers innovative solutions in composite materials 
while contributing to better waste management practices in the palm oil industry. 
 

2. METHODS  

 The research process involved developing an artificial neural network using 
experimental data. The neural network development process involved training and testing 
using the same dataset. The research methodology can be seen in Figure 1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Flowchart of this research 

 
Figure 1 shows the research starting with fabricating composite specimens with variations 
in soaking time, volume fraction, and fiber length, followed by mechanical testing to 
determine their tensile strength. After obtaining the tensile strength values, an Artificial 
Neural Network (ANN) is used to predict the tensile strength of the composites. Finally, the 
actual tensile strength values from testing are compared with the predicted values from the 
ANN, and the results are analyzed and discussed. 
 
2.1. Test data 
 This test was conducted on soaking time, volume fraction of Palm Oil Empty Bunches 
(POEB) fiber, and length of POEB fiber. Those used orthogonal array L9 (3x3) as seen in 
Table 1. 
 

Table 1. Variation of testing 

Soaking time 
(h) 

Volume fraction 
(%) 

Fiber length 
(cm) 

6 10 3 
8 20 5 

10 30 7 

Start 

Specimen fabrication 
with soaking time, 

volume fraction, and 
fiber length variation 

Mechanical 
testing 
(tensile 

strength) 

Value of 
tensile 

strength 
composite 

ANN prediction for 
composite tensile strength 

Result and discussion 
(actual and predicted 

tensile strength) 

Finish 
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2.2. Artificial Neural Networks 
 An Artificial Neural Network (ANN) with a radial basis function (RBF) is an artificial 
neural network that uses a radial basis function as an activation function. ANN RBF usually 
consists of three layers: an input layer, a hidden layer, and an output layer. The input layer 
receives the signal and passes it to the hidden layer. Each neuron in the hidden layer uses 
a radial basis function, usually a Gaussian function, to measure the distance between the 
input and the center (centroid) of the neuron. The output of the neurons in this layer is the 
value of the radial basis function applied over that distance. Neurons in the output layer 
produce the network output by performing a linear combination of the outputs of the hidden 
layers. The main advantage of ANN RBF is its ability to handle classification and regression 
problems with good performance. ANN RBF is often used because of its ability to 
interpolate data, namely estimating values between known data points, and fast learning, 
which makes the ANN RBF training process more efficient (20). 
 Backpropagation ANN is an artificial neural network that uses a backpropagation 
algorithm to train the network. This network consists of an input layer, one or more hidden 
layers, and an output layer. In Backpropagation ANN, each neuron in hidden and output 
layers uses an activation function, such as sigmoid or ReLU, to produce output. The 
Backpropagation ANN training process involves two main stages: feedforward and 
backpropagation. In the feedforward stage, input is forwarded through the network to 
produce output. In the backpropagation stage, the error or difference between the expected 
output and the resulting output is calculated and used to update the network weights 
gradually through backpropagation from the output layer to the input layer. The 
backpropagation algorithm uses a gradient descent method to minimize error by adjusting 
weights iteratively. Backpropagation ANNs are popular due to their ability to learn complex 
patterns and perform accurate predictions in various applications, including pattern 
recognition, timing prediction, and classification. The advantage of ANN Backpropagation 
is its flexibility in handling several types of data and problems and its ability to adjust 
network weights to improve prediction accuracy over time automatically (21). 
 

3. RESULT AND DISCUSSION  
 The procedure for making predictions with an artificial neural network (ANN) consists 
of two main stages. The first step is the training phase, where the system develops the 
neural network by learning using the given input data. The next step involves evaluating 
the performance of the developed neural network through testing. 
 
3.1. Tensile strength  
 The tensile strength obtained from experimental testing is presented in the data shown 
in Table 2. The result indicates that soaking time, fiber volume fraction, and fiber length all 
have significant effects on the tensile strength of the composite material. Generally, 
composites with higher fiber volume fractions (30% and 40%) exhibit higher tensile strength 
values, with the highest strength recorded at 5.60 Mpa for a 6-hour soaking time, 30% fiber 
volume fraction, and 7 cm fiber length. The fiber length also plays a crucial role, with longer 
fibers (5-7 cm) contributing to higher tensile strength compared to shorter fibers (3 cm). For 
example, at a 6-hour soaking time and 40% fiber volume fraction, increasing fiber length 
from 3 cm to 7 cm increases tensile strength from 2.51 Mpa to 6.01 Mpa. The soaking time 
shows variable effects; for instance, while 6-hour soaking times tend to produce higher 
tensile strength in some cases, 10-hour soaking times do not consistently increase 
strength. This suggests that a balance of soaking time, fiber volume fraction, and fiber 
length is essential for optimizing tensile strength. 
 

Table 2. Tensile strength of composite with POEB fiber 

Soaking time 
(hours) 

Fiber volume 
fraction (%) 

Length of fiber 
(cm) 

Tensile 
strength (MPa) 

6 10 3 2.62 

6 10 5 2.68 

6 10 7 3.03 
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Soaking time 
(hours) 

Fiber volume 
fraction (%) 

Length of fiber 
(cm) 

Tensile 
strength (MPa) 

6 30 3 2.37 

6 30 5 3.65 

6 30 7 5.60 

6 40 3 2.51 

6 40 5 4.31 

6 40 7 6.01 

8 10 3 2.41 

8 10 5 2.11 

8 10 7 2.22 

8 30 3 2.43 

8 30 5 2.57 

8 30 7 2.94 

8 40 3 2.50 

8 40 5 3.29 

8 40 7 4.02 

10 10 3 1.63 

10 10 5 2.50 

10 10 7 3.33 

10 30 3 2.05 

10 30 5 3.26 

10 30 7 4.23 

10 40 3 4.54 

10 40 5 4.86 

10 40 7 5.24 

  
3.2. Training 
 The training process for developing the neural network employs experimental data as 
mentioned in Table 2. The developed artificial neural network is subsequently evaluated 
using the training data to assess the accuracy of its predictions. The performance results 
of the training are illustrated in Figure 2. 

  

 
 

Figure 2. ANN training data (ANN backpropagation)  
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Figure 3. ANN training data (ANN RBF) 

  
 Figure 2 shows that the backpropagation ANN can follow the actual data trend, and 
the error is relatively minor compared to the RBF ANN. ANN backpropagation has an 
absolute error range from 0.00022 to 0.0279, while ANN RBF is between 0.046 and 0.83. 
The mean absolute error (MAE) training backpropagation is 0.0078, while the ANN RBF is 
0.371. The backpropagation algorithm uses a gradient descent method to iteratively 
optimize network weights by minimizing error (22). This process allows for continuous 
adjustment of weights based on calculated errors, resulting in a more accurate model over 
time. Although radial basis function (RBF) networks use non-linear basis functions, having 
only one hidden layer limits their ability to capture complex non-linearities compared to 
deeper backpropagation networks (23). 
 
3.3. Testing 
 The testing process was conducted to evaluate the performance of the established 
neural network in making predictions. The testing utilized the same data as the training 
data, but the directive given was specifically for testing. A total of nine data points were 
randomly selected to provide an overview of the performance of the developed Artificial 
Neural Network (ANN), with the results illustrated in Figure 3. 
 

 
 

Figure 4. Testing ANN (backpropagation) 
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Figure 5. Testing ANN (RBF) 

  
 Since the RBF ANN exhibited a higher mean square error than the backpropagation 
ANN during training, the MAE was consequently greater when tested with different 
datasets. The absolute error range for the ANN backpropagation is between 0.052 to 0.86, 
while the ANN RBF error range is 0.19 to 1.3, and the MAE for the ANN backpropagation 
is 0.45 while the ANN RBF is 0.53. Even though the RBF ANN has a higher error than the 
backpropagation ANN, both have an MAE below 10% of the data so that the ANN can be 
used to predict the tensile strength of TKKS fiber-reinforced composites.  
 

4. CONCLUSION 
 The use of ANN in prediction shows that both ANN Radial Basis Function (RBF) and 
ANN Backpropagation can predict the tensile strength of TKKS composites with a Mean 
Absolute Error (MAE) below 10%. This proves that both types of ANN can be used for this 
prediction purpose with acceptable accuracy. The accuracy of the Backpropagation ANN 
model is better than the RBF ANN, especially in following actual data trends and producing 
more minor errors during the training and testing process. The data shows that the MAE of 
ANN Backpropagation training is lower, 0.0078, compared to the MAE of ANN RBF training, 
which reaches 0.371. In addition, at the testing stage, the MAE of ANN Backpropagation 
was 0.45, which was also lower than the MAE of ANN RBF of 0.53. The higher performance 
of ANN Backpropagation shows its reliability in more accurate and consistent predictions. 
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