ANALISIS PRIORITAS *UPGRADING* UNTUK REKOMENDASI PENINGKATAN KINERJA SISTIM MANUFAKTUR SECARA BERKELANJUTAN

SLAMET BUDIARTO, SUPARNO, DAN INDUNG SUDARSO

Jurusan Teknik Industri, Fakultas Teknologi Industri, ITS Kampus Keputih, Sukolilo, Surabaya 60111

Laman: budiarto@ie.its.ac.id

ABSTRAK

Analisis prioritas upgrading pertama dilakukan dengan membuat model aktivitas dengan IDEFO (Integrated Definition Language 0) sampai aktivitas terkecil. Verifikasi dilakukan dengan petugas lapangan, sedangkan validasi dilakukan dengan software IDEF37. Dengan menganggap bahwa model aktivitas tersebut merupakan sebuah peta aktivitas, maka langkah selanjutnya dilakukan pembobotan tingkat kepentingan aktivitas yang ada. Setelah indikator kinerja tiap aktivitas tersebut ditentukan, maka analisa selanjutnya dilakukan melalui perangkingan dan pendefinisian aktivitas kritis untuk menentukan ICOM's yang akan di-upgrade. Dari data dan pengolahan yang dilakukan, terdapat 627 ICOM's yang dianalisa atas dasar indikator kinerjanya pada output tertentu. Selain itu, terdapat 15 tahap yang direkomendasikan untuk perbaikan kinerjanya, dengan asumsi dalam satu tahap terdiri 30 ICOM's yang diperbaiki kinerjanya dalam enam bulan. Prioritas upgrading ICOM's dimulai dari upgrading spesifikasi teknik, SDM, dan fasilitas, pada aktivitas merencanakan program produksi. Namun, secara umum aktivitas merencanakan program produksi dan aktivitas merencanakan material serta kapasitas yang diinginkan merupakan aktivitas yang ICOM-nya paling sering mengalami upgrading tahap I. Secara berkelanjutan peningkatan kinerja dapat dilakukan dengan mengacu pada prioritas upgrading tahap II, III dan seterusnya. Evaluasi upgrading perlu dilakukan setelah implementasi upgrading tahap 3. Hal tersebut berguna untuk memutuskan apakah perlu melakukan upgrading tahap IV atau melakukan analisis prioritas kembali.

Kata kunci: Upgrading, IDEF0, ICOM, Sistim Manufaktur, Berkelanjutan

ABSTRACT

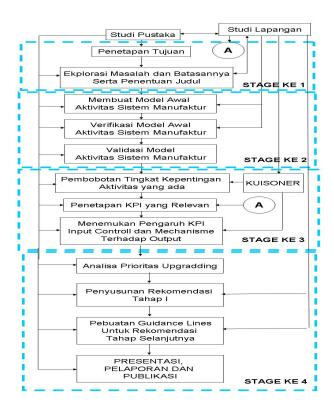
The analysis is done by upgrading the priority, first create a model of activity with IDEF0 (Integrated Definition Language 0) To The Smallest activity. Verification is done by field officers, while the validation is done by software IDEF37. With regard that the activities that the model is a map of the activity. Then the next step don is weighting the importance of existing activities. Once the performance indicators of each activity is determined, then the analysis is then performed through the sorting and defining the activity of ICOM's critical to determine which will be upgraded. Of data and processing is done, there are 627 ICOM's are analyzed on the basis of performance indicators on a specific output. And consists of 15 stages are recommended for improved performance, assuming a single phase which comprises 30 ICOM's performance will be improved within six months. The priority of upgrading is begined to upgrade technical specifications, human resources, and facilities at the activities planned production program. However, in general the activity plan programs and activities planned production capacity and desired material is the activity that most often experience upgrading in the first stage. Continuous performance improvement can be made with reference to the upgrading priority of phase II, III and so on. Evaluation upgrading needs to be done after the implementation of upgrading stage 3. It is useful to decide whether to do the upgrading stage IV or re-analyze priority.

Key word: Upgrading, IDEF0, ICOM, Manufacturing Systems, Sustainable

PENDAHULUAN

Penelitian ini dilatar belakangi oleh kesulitan industri yang diamati (PT. Barata Indonesia), ketika menentukan prioritas dalam melakukan *upgrading* pada aktivitas yang sangat banyak pada sistim manufakturnya. Disisi lain, perusahaan mempunyai keterbatasan dana dan waktu untuk melakukan peningkatan kinerja secara keseluruhan.

Penelitian ini didasarkan pada asumsi bahwa peningkatan kinerja setiap aktivitas pada sistim manufaktur dipengaruhi langsung oleh tiap-tiap ICOM's (Input, Control, Output dan Mechanism), selanjutnya mempengaruhi kinerja sistim secara keseluruhan. Sedangkan metodologi yang digunakan merupakan adopsi dari SSM (Soft System Methodology) 4 stage dari Cheklang (2003) dan Budiarto (2004 dan


2007) yang dapat dikembangkan sampai pada analisa prioritas *upgrading* ICOM's.

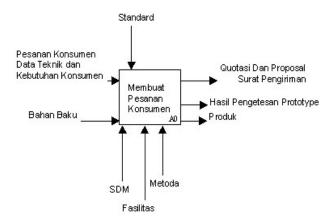
Tujuan yang hendak dicapai dalam penelitian ini antara lain mengembangkan dan melakukan kajian menyeluruh terhadap permasalahan industri manufaktur yang berkaitan dengan metoda-metoda untuk meningkatkan kinerja sistim manufaktur secara berkelanjutan (Budiarto, 2004 dan 2007). Tujuan lainnya adalah membuat peta aktivitas sistim manufaktur yang diamati (Job Order Manufacturing System), dengan memanfaatkan software IDEF37. Kemudian membuat skala prioritas upgrading pada ICOM's aktivitas terkecil sebagai dasar untuk membuat rekomendasi peningkatan kinerja sistim manufaktur secara berkelanjutan dalam industri manufaktur yang diamati.

METODE

Tahap pertama yaitu "Finding out about a problem situation" (Chekland, 2003), dengan melakukan studi pustaka terkait dengan konsep dan metode reengineering dan pengukuran kinerja, dengan mengacu Kuwaiti (2000), Neely dkk. (2000), Bourne dan Mills (2000) dan Budiarto (2007). Selanjutnya dilakukan studi lapangan, penetapan tujuan dan eksploratasi masalah serta penentuan batasan masalah. Tahap kedua adalah membuat model aktivitas dengan IDEF0 (Integrated Definition Language 0) sampai aktivitas terkecil. Selanjutnya verifikasi dilakukan dengan petugas lapangan (orang yang bertanggung jawab pada setiap aktivitas yang dimodelkan, misalnya pada aktivitas Top, diverifikasi oleh kepala divisi alat berat), sedangkan validasi dilakukan dengan software IDEF37.

Tahap ketiga adalah melakukan pembobotan tingkat kepentingan aktivitas dengan menggangap bahwa model aktivitas tersebut merupakan sebuah peta aktivitas. Setelah indikator kinerja tiap aktivitas ditentukan, maka tahap selanjutnya melakukan pembobotan aktivitas, penetapan KPI (Key Performance Indicator) yang relevan, perangkingan dan pendefinisian aktivitas kritis untuk menentukan ICOM's yang akan di-upgrade. Sedangkan tahap akhir penelitian ini adalah pembuatan rekomendasi peningkatan kinerja sistim tahap 1, 2, 3 dan seterusnya. Tahap ke 4 "Taking action in the situation to bring about improvement" (Chekland, 2003). Gambar 1 mengilustrasikan metode secara menyeluruh dari penelitian ini.

Gambar 1. Metode Penelitian

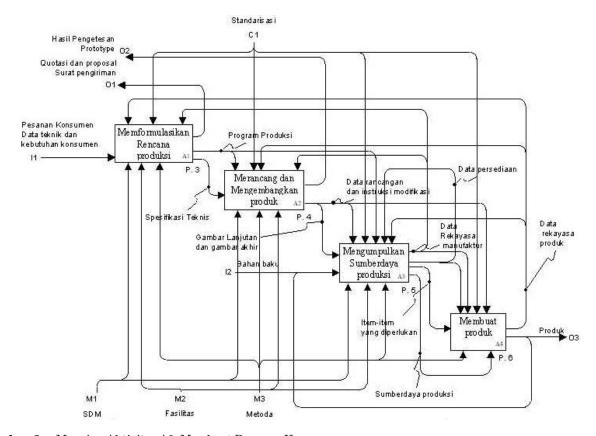

HASIL DAN PEMBAHASAN

Mapping Aktivitas

Hasil yang dimaksud meliputi mapping aktivitas pada industri yang diamati (PT. Barata Indonesia), yang terdiri dari *mapping* awal aktivitas membuat pesanan konsumen (aktivitas top) yang dikomposisikan menjadi aktivitas: memformulasikan rencana produksi (aktivitas A1), yang dikomposisikan lagi menjadi aktivitas: menjual dan melakukan kontrak (aktivitas (A11) dan merencanakan program produksi (aktivitas A12). Aktivitas selanjutnya, merancang dan mengembangkan produk (aktivitas A2), yang dikomposisikan menjadi aktivitas: mengendalikan perancangan dan pengembangan (aktivitas A21), menyiapkan gambar teknik (aktivitas A22), membuat dan mengetes prototype (aktivitas 23), menyiapkan gambar teknik (aktivitas A24). Kemudian aktivitas mengumpulkan sumberdaya produksi (aktivitas A3), yang dikomposisikan menjadi aktivitas: Merencanakan material dan kapasitas yang diperlukan (aktivitas A31), mendapatkan kapasitas produksi (aktivitas A32), menentukan item-item yang diperlukan (aktivitas A33). Aktivitas terakhir adalah membuat produk (aktivitas A4), yang dikomposisikan

menjadi aktivitas: mengendalikan produksi (aktivitas A41), membuat komponen (aktivitas A42), membuat sub rakitan (aktivitas A43), membuat rakitan akhir (aktivitas A44), mengetes rakitan akhir (aktivitas A45)

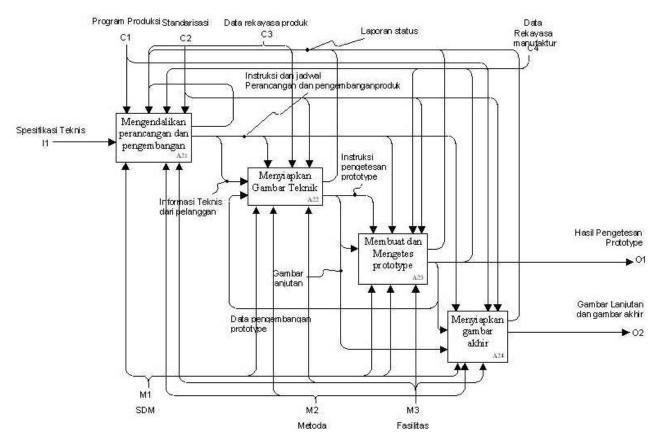
Setelah dilakukan verifikasi dan validasi model, mapping aktivitas secara keseluruhan dengan menggunakan software IDEF37 pada PT. Barata Indonesia ditunjukkan pada Gambar 2 sampai Gambar 7. Pada Gambar 2 terlihat adanya input (bahan baku dan pesanan konsumen, data teknik dan kebutuhan konsumen, kemudian control (standart),

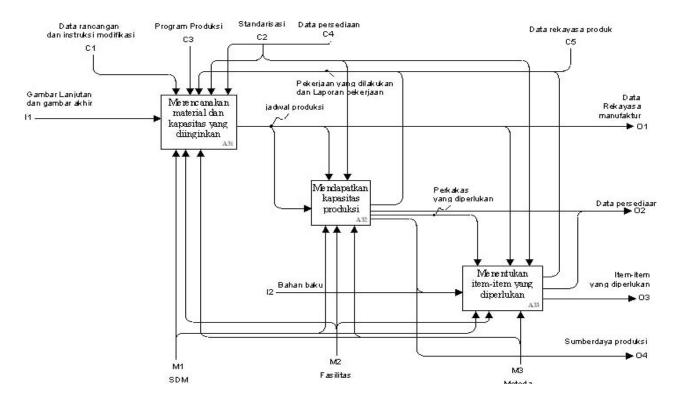

Gambar 2. *Mapping* Aktivitas Top yaitu Membuat Pesanan Konsumen

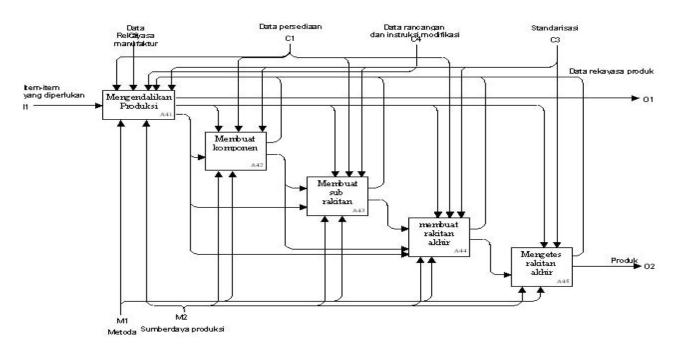
output (produk, hasil pengetesan *prototype*, dan surat pengiriman maupun quotasi dan proposal). Pada gambar tersebut juga terlihat mekanismenya (SDM, fasilitas dan metode).

Gambar 3 merupakan dekomposisi dari aktivitas top (membuat pesanan konsumen pada Gambar 2). Gambar tersebut terdiri dari empat aktivitas, yaitu: memformulasikan rencana produksi, merancang dan mengembangkan produk, mengumpulkan sumberdaya produksi dan membuat produk. Gambar 4 merupakan dekomposisi dari aktivitas memformulasikan rencana produksi, yang terdiri dari dua aktivitas, yaitu menjual dan melakukan kontrak, dan aktivitas merencanakan program produksi.

Dekomposisi dari aktivitas merancang dan mengembangkan produk, terlihat seperti pada Gambar 5. Aktivitas tersebut terdiri dari 4 aktivitas, yaitu mengendalikan perancangan dan pengembangan, menyiapkan gambar teknik, membuat dan mengetes *prototype*, serta menyiapkan gambar akhir.


Pada Gambar 6 terlihat dekomposisi dari aktivitas mengumpulkan sumberdaya produksi, yang terdiri dari aktivitas merencanakan material dan kapasitas yang diinginkan, mendapatkan kapasitas produksi, dan aktivitas menentukan itemitem yang diperlukan. Sedangkan Gambar 7 berikut


Gambar 3. Mapping Aktivitas A0, Membuat Pesanan Konsumen


Gambar 4. Mapping Aktivitas A1, Memformulasikan Rencana Produksi

Gambar 5. Mapping Aktivitas A2, Merancang dan Mengembangkan Produk

Gambar 6. Mapping Aktivitas A3, Mengumpulkan Sumberdaya Produksi

Gambar 7. Mapping Aktivitas A4, Membuat Produk

merupakan dekomposisi dari aktivitas membuat produk, yang terdiri dari aktivitas mengembalikan produksi, membuat komponen, membuat sub rakitan, membuat rakitan akhir dan aktivitas mengetes rakitan akhir.

Pembobotan

Setelah *mapping* aktivitas dibuat, maka selanjutnya dilakukan pembobotan aktivitas pada tingkat aktivitas terkecil (aktivitas A11 sampai A45). Tabel 1 menunjukkan hasil pembobotan yang sudah

diurutkan, sebagai contoh aktivitas A45 (mengetes rakitan) berada di nomer urut ke 5.

Tabel 1. Urutan Bobot Aktivitas

No.	No.	Nama	%
Urut*	Aktivitas	Aktivitas	Bobot
1	A12	Merencanakan Program Produksi	8,238
2	A41	Mengendalikan Produksi	8,238
3	A11	Menjual Produk dan Melakukan Kontrak	8,009
4	A31	Merencanakan Material dan Kapasitas yang diinginkan	7,780
5	A45	Mengetes Rakitan	7,780
6	A22	Menyiapkan Gambar Teknik	7,323
7	A33	Menentukan item-item yang diperlukan	7,323
8	A44	Membuat Rakitan Akhir	7,323
9	A21	Mengendalikan Perancangan dan Pengembangan	6,865
10	A32	Mendapatkan Kapasitas Produksi	6,636
11	A42	Membua Komponen	6,407
12	A23	Membuat dan Mengetes Prototype	6,178
13	A43	Membuat Sub Rakitan	6,178
14	A24	Menyiapkan Gambar Akhir	5,721
			100,000

^{*} Nomer urut menunjukan urutan bobot aktivitas hasil sortir

Nilai Pengaruh ICOM's pada Tiap Indikator dan Output

ICOM's pada setiap aktivitas dapat dilihat pada Gambar 4 sampai Gambar 7. Selanjutnya dilakukan perhitungan nilai pengaruh ICOM's pada tiap indikator kinerja dan output aktivitas yang diamati. Tabel 2 sampai Tabel 4 menunjukkan pada aktivitas yang sama, yaitu menjual produk dan melakukan kontrak. Angka 1,3349 merupakan % bobot aktivitas menjual produk dan melakukan kontrak. Angka tersebut dapat terlihat pada Tabel 1, dimana aktivitas menjual produk mempunyai % bobot 8,009. Karena ada enam kombinasi antara 2 output ("quotasi dan proposal, surat pengiriman" dan "spesifikasi teknis") dan 3 indikator kinerja pada aktivitas tersebut, maka %bobot aktivitas pada ketiga indikator kinerja pada aktivitas tersebut adalah 8,009/6 = 1,3349 (dihitung dengan menggunakan pendekatan rata-rata bobot).

Pada Tabel 2, rata-rata skor diperoleh dari jawaban kuisoner yang dirata-ratakan. Pada kuisoner tersebut, pengaruh ICOM's dibuat dalam rentang skala 1 sampai 5. Pada kolom 4 Tabel 2 sampai Tabel 4 terlihat % pengaruh dari ICOM's. Angka pada kolom tersebut diperoleh dari perbandingan rata-rata skor dengan total rata-rata yang kemudian dikalikan dengan % Bobot (1,3349).

Tabel 2. Pengaruh ICOM's pada Aktivitas Menjual Produk (A11)

Nama Indika

a aktivitas	: Menjual Produk dan Melakukan Kontrak	% Bobot:	1,3349
kator Kinerja	a : Ongkos Menjual Produk dan Melakukan Kontrak		

No. Aktivitas	Pengaruh dari; input, kontrol, dan mekanisme	rata-rata skor	% Pengaruh
A11	Input (Data Teknik dan Kebutuhan Konsumen)	4,5	0,2145
A11	Kontrol #1 (Data Rekayasa Produk)	4	0,1907
A11	Kontrol #2 (Data Rekayasa Manufaktur)	3,75	0,1788
A11	Kontrol#3 (Standarisasi)	4	0,1907
A11	Mekanisme (SDM)	3,75	0,1788
A11	Mekanisme (Fasilitas)	3,75	0,1788
A11	Mekanisme (Methoda)	4,25	0,2026
	Total rata-rata	28	1,3349

Tabel 3. Pengaruh ICOM's pada Aktivitas Menjual Produk (A11)

% Bobot: 1,3349 Nama aktivitas : Menjual Produk dan Melakukan Kontrak Indikator Kineria: Waktu Menjual Produk dan Melakukan Kontrak

No. Aktivitas	Pengaruh dari; input, kontrol, dan mekanisme	rata-rata skor	% Pengaruh
A11	Input (Data Teknik dan Kebutuhan Konsumen)	4,5	0,2184
A11	Kontrol #1 (Data Rekayasa Produk)	4	0,1942
A11	Kontrol #2 (Data Rekayasa Manufaktur)	3,75	0,1820
A11	Kontrol#3 (Standarisasi)	3,25	0,1578
A11	Mekanisme (SDM)	3,75	0,1820
A11	Mekanisme (Fasilitas)	3,75	0,1820
A11	Mekanisme (Methoda)	4,5	0,2184
	Total rata-rata	27,5	1,3349

Tabel 4. Pengaruh ICOM's pada Aktivitas Menjual Produk (A11)

Nama aktivitas : Menjual Produk dan Melakukan Kontrak % Bobot: 1,3349

Indikator Kinerja: Kelengkapan Dokumen

No. *	Pengaruh dari; input, kontrol, dan mekanisme	rata-rata skor	Nilai pengaruh
A11	Input (Data Teknik dan Kebutuhan Konsumen)	4,25	0,2063
A11	Kontrol #1 (Data Rekayasa Produk)	3,75	0,1820
A11	Kontrol #2 (Data Rekayasa Manufaktur)	3,75	0,1820
A11	Kontrol#3 (Standarisasi)	3,75	0,1820
A11	Mekanisme (SDM)	3,5	0,1699
A11	Mekanisme (Fasilitas)	4	0,1942
A11	Mekanisme (Methoda)	4,5	0,2184
	Total rata-rata	27,5	1,3349

Tabel 5. Nilai Pengaruh ICOM's pada Aktivitas Mengetes Rakitan akhir (A45)

Nama aktivitas : Mengetes Rakitan Akhir % Bobot: 1,2967

Indikator Kinerja: Ongkos Pengetesan Produk

No. Aktivitas	Pengaruh dari; input, kontrol, dan mekanisme	rata-rata skor	% Pengaruh
A44	Input (Produk Akhir)	4	0,2730
A44	Kontrol #1 (Jadwal Produksi)	3,5	0,2389
A44	Kontrol#1 (Standarisasi)	4	0,2730
A44	Mekanisme (Sumberdaya produksi)	3,75	0,2559
A44	Mekanisme (Methoda)	3,75	0,2559
	Total rata-rata	19	1,2967

Tabel 6. Nilai Pengaruh ICOM's pada Aktivitas Mengetes Rakitan akhir (A45)

Nama Aktivitas : Mengetes Rakitan Akhir % Bobot: 1,2967

Indikator Kinerja : Waktu Pengetesan Produk

No. Aktivitas	Pengaruh dari; input, kontrol, dan mekanisme	rata-rata skor	% Pengaruh
A44	Input (Produk Akhir)	3,75	0,2559
A44	Kontrol #1 (Jadwal Produksi)	3,5	0,2389
A44	Kontrol#1 (Standarisasi)	3,5	0,2389
A44	Mekanisme (Sumberdaya produksi)	4	0,2730
A44	Mekanisme (Methoda)	4,25	0,2901
	Total rata-rata	19	1,2967

Tabel 7. Nilai Pengaruh ICOM's pada Aktivitas Mengetes Rakitan akhir (A45)

Nama Aktivitas : Mengetes Rakitan Akhir % Bobot: 1,2967

Indikator Kinerja: Ongkos Pengetesan Produk

No. Aktivitas	Pengaruh dari; input, kontrol, dan mekanisme	rata-rata skor	% Pengaruh
A44	Input (Produk Akhir)	4	0,2730
A44	Kontrol #1 (Jadwal Produksi)	3,5	0,2389
A44	Kontrol#1 (Standarisasi)	3,75	0,2559
A44	Mekanisme (Sumberdaya produksi)	3,75	0,2559
A44	Mekanisme (Methoda)	4	0,2730
	Total rata-rata	19	1,2967

Selanjutnya seperti pada Tabel 2 sampai Tabel 4 dibuat untuk berbagai indikator kinerja pada setiap aktivitas (untuk semua aktivitas seperti Tabel 1). Perhitungan % bobot pada setiap aktivitas mengacu pada % bobot pada Tabel 1, dengan mempertimbangkan output aktivitas yang bersangkutan dan kinerja aktivitas yang telah ditetapkan (dalam tabel tersebut terlihat ada tiga indikator kinerja, yaitu: ongkos, waktu, dan kelengkapan dokumen). Tabel 5 sampai Tabel 7, menunjukan pengaruh ICOM's pada aktivitas yang lain yaitu aktivitas A45 (mengetes rakitan akhir).

Dalam pengolahan data, perhitungan nilai % pengaruh dilakukan untuk semua aktivitas pada semua indikator kinerja. Dalam hal ini terdapat 627 ICOM's yang mempengaruhi output suatu aktivitas.

Prioritas Upgrading Menyeluruh

Setelah nilai pengaruh untuk semua ICOM's pada indikator kinerja dan output tiap aktivitas, maka berikut diberikan tahap demi tahap ICOM's yang akan direkomendasikan untuk perbaikan kinerja aktivitas terkecil pada sistim yang diamati. Pada Tabel 8, memperlihatkan urutan % bobot ICOM's pada aktivitas tertentu yang telah disortir dari semua ICOM's pada semua aktivitas. Tabel

tersebut memperlihatkan rerata skor dan % bobot yang nilainya sama dengan % pengaruh (pada Tabel 2 sampai 7). Selanjutnya angka tersebut diberi nama % bobot Prioritas atau % bobot (Pr) pada Tabel 8.

Penentuan Tahap I yang terdiri dari 30 item (input, output dan mekanisme) yang akan dilakukan *upgrading* pada tiap tahapnya, mengacu pada prediksi peneliti bersama-sama dengan pihak PT. Barata dalam periode enam bulanan akan dilakukan *upgrading* sebanyak 30 item. Pada Tabel 8 menunjukkan % bobot (Pr) ICOM's pada aktivitas tertentu dan pada output tertentu pula (seperti pada nomer urut 1 dan 5, menunjukkan angka dari output yang berbeda).

Dari 627 item (input, output dan mekanisme) yang diperoleh dari hasil pengolahan data, maka selanjutnya dibuat prioritas *upgrading* tahap II. Dengan pendekatan yang sama dengan tahap I, maka tahap II dimulai dari nomer urut 31 sampai 60, seperti ditunjukkan pada Tabel 9.

Tabel 8. Prioritas UpGradding ICOM"s Tahap I

No	Aktivitas	ICOM's yang direkomendasikan	Rerata skor	% Bobot (Pr)
1	A12	Input (Spesifikasi Teknik)	4	0,3821
2	A12	Mekanisme (Methoda)	4	0,3821
3	A12	Mekanisme (SDM)	3,75	0,3582
4	A12	Mekanisme (Fasilitas)	3,75	0,3582
5	A12	Input (Spesifikasi Teknik)	3,75	0,3582
6	A12	Mekanisme (SDM)	3,75	0,3582
7	A12	Mekanisme (Fasilitas)	3,75	0,3582
8	A12	Mekanisme (Methoda)	3,75	0,3582
9	A12	Mekanisme (SDM)	3,75	0,3582
10	A12	Kontrol #2 (Data Rekayasa Manufaktur)	3,5	0,3343
11	A12	Kontrol 3 (Spesifikasi Teknik)	3,5	0,3343
12	A12	Kontrol#4 (Standarisasi)	3,5	0,3343
13	A12	Mekanisme (Methoda)	3,5	0,3343
14	A12	Input (Spesifikasi Teknik)	3,5	0,3343
15	A12	Kontrol #2 (Data Rekayasa Manufaktur)	3,5	0,3343
16	A12	Kontrol 3 (Spesifikasi Teknik)	3,5	0,3343
17	A31	Mekanisme (SDM)	4,25	0,3242
18	A31	Mekanisme (Methoda)	4	0,3217
19	A31	Kontrol#3 (Program produksi)	4	0,3120
20	A12	Kontrol #1 (Data Rekayasa Produk)	3,25	0,3104
21	A12	Kontrol 3 (Spesifikasi Teknik)	3,25	0,3104
22	A12	Kontrol#4 (Standarisasi)	3,25	0,3104
23	A12	Kontrol#4 (Standarisasi)	3,25	0,3104
24	A12	Mekanisme (Fasilitas)	3,25	0,3104
25	A31	Mekanisme (Methoda)	4	0,3051
26	A31	Input (gambar akhir)	3,75	0,3016
27	A31	Kontrol#2 (Standarisasi)	3,75	0,3016
28	A31	Input (gambar akhir)	3,75	0,2925
29	A31	Kontrol #4 (data persediaan)	3,75	0,2925
30	A31	Mekanisme (SDM)	3,75	0,2925

Tabel 9. Prioritas *UpGradding* ICOM's Tahap II

No	Aktivitas	ICOM's yang direkomendasikan	Rerata skor	% Bobot (Pr)
31	A31	Mekanisme (Fasilitas)	3,75	0,2925
32	A31	Mekanisme (Methoda)	3,75	0,2925
33	A44	Mekanisme (Methoda)	$4,\!25$	0,2901
34	A44	Mekanisme (Methoda)	4,25	0,2901
35	A12	Kontrol #2 (Data Rekayasa Manufaktur)	3	0,2865
36	A12	Kontrol #1 (Data Rekayasa Produk)	3	0,2865
37	A31	Input (gambar akhir)	3,75	0,2860
38	A31	Kontrol #1 (data rancangan dan intruksi modifikasi)	3,75	0,2860
39	A31	Kontrol#2 (Standarisasi)	3,75	0,2860
40	A31	Kontrol#3 (Program produksi)	3,75	0,2860
41	A31	Kontrol #4 (data persediaan)	3,75	0,2860
42	A31	Kontrol #1 (data rancangan dan intruksi modifikasi)	3,5	0,2815
43	A31	Kontrol#3 (Program produksi)	3,5	0,2815
44	A31	Kontrol #4 (data persediaan)	3,5	0,2815
45	A31	Kontrol #5 (data rekayasa produk)	3,5	0,2815
46	A31	Mekanisme (SDM)	3,5	0,2815
47	A31	Kontrol #1 (data rancangan dan intruksi modifikasi)	3,5	0,2730
48	A31	Kontrol#2 (Standarisasi)	3,5	0,2730
49	A31	Kontrol #5 (data rekayasa produk)	3,5	0,2730
50	A44	Input (Produk Akhir)	4	0,2730
51	A44	Kontrol#1 (Standarisasi)	4	0,2730
52	A44	Mekanisme (Sumberdaya produksi)	4	0,2730
53	A44	Input (Produk Akhir)	4	0,2730
54	A44	Mekanisme (Methoda)	4	0,2730
55	A44	Input (Produk Akhir)	4	0,2730
56	A44	Kontrol#1 (Standarisasi)	4	0,2730
57	A44	Mekanisme (Sumberdaya produksi)	4	0,2730
58	A44	Input (Produk Akhir)	4	0,2730
59	A44	Mekanisme (Methoda)	4	0,2730
60	A31	Kontrol #5 (data rekayasa produk)	3,5	0,2670

Rekomendasi Prioritas Upgrading ICOM's

Prioritas upgrading ini, dibuat dengan metoda yang terstruktur. Mulai dari mapping aktivitas, pembobotan, tingkat kepentingan, sampai dibuat urutan prioritas. Selain itu, prioritas ini dibuat secara unik namun mudah diimplementasikan. Upgrading pada ICOM's tahap satu untuk meningkatkan kinerja perusahaan dengan segala konstrain yang ada ditunjukkan pada Tabel 8. Rekomendasi tahap satu ini direkomendasikan untuk dilaksanakan dalam kurun waktu enam bulan. Setelah tahap satu dilakukan *upgrading*, maka tahap dua dan selanjutnya dapat dilakukan secara berkelanjutan. Tabel 9 merupakan acuan untuk *upgrading* tahap II. Dengan demikian, penelitian ini memberikan rekomendasi untuk dianalisis kembali setelah lima belas tahap rekomendasi dilaksanakan (selama tujuh setengah tahun) untuk melihat ketelitian metode. Namun untuk keperluan implementasi, disarankan agar setelah pelaksanaan tahap ke 3, dilakukan evaluasi kembali penentuan prioritas *upgrading* untuk tahap selanjutnya jika diperlukan.

SIMPULAN

Dari pengolahan data yang dilakukan, terdapat 627 ICOM's yang dianalisis atas dasar indikator kinerja pada output tertentu dan 15 tahap yang direkomendasikan untuk perbaikan kinerjanya (asumsi dalam satu tahap terdiri 30 ICOM's yang akan diperbaiki dalam enam bulan). Urutan prioritas upgrading tahap I dan II yang diusulkan dalam penelitian ini ditunjukkan pada Tabel 8 dan 9. Dari data tersebut terlihat bahwa ICOM pada aktivitas A12 dan A31 paling banyak direkomendasikan untuk diperbaiki pada tahap I. Kemudian secara berkelanjutan, perbaikan kinerja ICOM's pada aktivitas terkecil dapat dilakukan seperti urutan ICOM's pada Tabel 9. Secara berkelanjutan upgrading semua ICOM's dapat dilakukan sampai ICOM ke 625.

DAFTAR PUSTAKA

- Bourne, M. dan Mills, J., 2000, Designing, Implementing and Updating Performance Measurement System., International Journal of Operation & Production Management, 20 (7), 754–771.
- Budiarto, S., 2004. Peningkatan Kinerja OHMS (Order handling Manufacturing System) Melalui Soft System Methodology (SSM). Thesis. Program Studi Teknik Industri. Program Pasca Sarjana Institut Teknologi Sepuluh Nopember. Surabaya.
- Budiarto, S., 2007. Pemanfaatan IDEF0 untuk Analisa Kinerja Sistim Manufaktur (Studi Kasus; The Order Handling Manufacturing Systems). *Jurnal Matematika*, *Saint dan Teknologi*. UT. Jakarta.

- Checkland, P., 2003. Handout, Soft System Methodology. http://www.hi.is/pub/cs/2001-02ms/hci/vika3-1.pdf. diakses Oktober 2003.
- Grabowska, A., 2003. New Learning Environment at The Traditional University in Poland. www.ifip.org/con2000/iceut2000/iceut07-06.pdf. diakses Oktober 2003.
- Kuwaiti, M.E., 2000. The Role of Performance Measurement in Business Process Re-Engineering. *International Journal of Operations & Production Management*, 20 (12), 1411–1426.
- Neely, A., Bourne, M., dan Kennerley, M., 2000. Performance Measurement System Design: Developing and Testing Process-Based Approach. *International Journal of Operation & Production Management*, 20 (10), 1119–1145.