ANALISIS KOMPARASI BIAYA DISTRIBUSI SISTEM REORDER POINT DAN DISTRIBUTION RESOURCE PLANNING

NINA TANIA

PT Ungaran Sarigarman Semarang Jawa Tengah Jl. Diponegoro 235 Ungaran Semarang E-mail: tania@gmail.com

ABSTRACT

Distribution method of Reorder Point is method which controlling and observing the amount of Inventory pursuant to at boundary of Reorder Point. If inventory smaller than boundary of reorder point hence require to do/conduct order. Method of Distribution Resource Planning is method which controlling and observing the amount of inventory pursuant to at stock safety. Where if inventory less than stock safety hence require to do/conduct order as according to time lead. Each; Every company will be out for always always menu request of consumer when and correct amount. For that fluency in pendistribution of product have to be majored so that require to be done/conducted by an Schedule Mains Distribution good JID as according to requirement each; every existing distribution network level. In this research of writer try to compare the expense of released distribution with method of DRP and Method of Reorder Point. Where distribution system at PT. PAI Probolinggo use Method of Reorder Point. In the reality after its it him Method distribution of DRP the expense of compared to smaller distribution of Method of Reorder Point. With applying of DRP can cost effective equal to that is equal to Rp. 1823171.4 or 14.7386369 % from expense of before using Reorder Point.

Key word: forecasting, reoder point, DRP

PENDAHULUAN

Sistem reorder point adalah suatu sistem untuk mengontrol dan mengatur inventory dengan menggunakan batas reorder point di mana apabila on hand inventory suatu item, jumlahnya lebih kecil dibandingkan dengan batas reorder pointnya, maka pihak pengambil keputusan harus memesan kembali item tersebut dengan jumlah yang sesuai dengan order quantity yang telah ditetapkan terlebih dahulu untuk setiap item dari tiap outlet. Data yang diperhitungkan reorder point: 1) Reorder point untuk outlet; dan 2) Reorder point untuk perusahaan. Faktor-faktor yang memengaruhi titik pemesanan kembali adalah: 1) Lead Time. adalah waktu yang dibutuhkan antara bahan baku dipesan hingga sampai diperusahaan; 2) Tingkat pemakaian bahan baku rata-rata persatuan waktu tertentu; dan 3) Persediaan Pengaman (Safety Stock). DRP (Distribution Resource Planning) adalah salah satu bentuk aplikasi lebih lanjut dari (Material Requirement Planning) MRP.

Persamaan: 1) Menggunakan cara perhitungan matematis yang sama; 2) Mempunyai matriks

komponen perhitungan yang sama; 3) Membedakan independent demand dan dependent demand; 4) Metode berlaku untuk dependent demand; dan 5) Keduanya menggunakan cara pemesanan berdasarkan rentang waktu.

Logika dasar DRP. Pertama-tama dihitung perkiraan kebutuhan produk ditingkat Distributor untuk setiap kurun waktu yang akan datang, yaitu kebutuhan bruto. Dari perkiraan ditingkat Distributor, dihitung kebutuhan neto berdasarkan rentang waktu atau jadwal yang akan datang.

Kebutuhan neto/kebutuhan bersih (Net Require ment) adalah jumlah kebutuhan sebenarnya yang dibutuhkan pada masing-masing periode waktu untuk memenuhi kebutuhan item. Hanya nilai kebutuhan neto positif yang dicatat dan dihitung. Dari sini dapat dihitung berapa yang kurang pada setiap rentang atau jadwal waktu tertentu. Dengan mengingat waktu pemesanan dapat dihitung mundur dapat ditentukan kapan dan berapa pesanan perlu dilakukan.

Perhitungan-perhitungan di atas dapat menghasilkan berapa jumlah dan waktu pesanan yang dilakukan Distributor merupakan jumlah dan waktu kebutuhan bruto dari pusat distribusi satu tingkat di atasnya.

Peramalan yang digunakan sebagai dasar untuk menentukan kebijakan pengendalian dari sistem persediaan (inventory). Peramalan tidak hanya digunakan untuk memperkirakan permintaan produk saja, namun secara luas juga digunakan dalam sistem lainnya.

Ramalan tentang pasar, jumlah pembeli yang potensial mengelola bahan baku, mengelola peralatan, dan mengelola sumber daya manusia mengelola persediaan membuat perencanaan produksi.

Metode peramalan menggunakan data masa lalu untuk memperkirakan atau memproyeksikan data di masa yang akan datang. Berdasarkan tingkatan awal peramalan.

Metode peramalan dapat dibagi menjadi Metode *Top-Down*, Metode *Bottom-Up*, dan Metode *Interpretasi* Permintaan.

Metode *Top-Down*, Metode *Bottom-Up*, dan Metode *Interpretasi* Permintaan dapat dilakukan dilakukan dengan Metode Kualitatif atau Kuantitatif salah satu atau bersama-sama.

Metode *time series* adalah metode peramalan secara kuantitatif dengan menggunakan waktu sebagai dasar peramalan.

Pola permintaan dapat diketahui dengan membuat "Scatter Diagram" yaitu pengeplotan data historis selama interval waktu tertentu peramalan terdiri dari jangka pendek: kurang dari 3 bulan, jangka menengah antara 3 bulan sampai dengan 3 tahun dan jangka panjang 3 tahun atau lebih.

Masing-masing metode untuk mengontrol dan mengatur inventory, baik metode Reorder Point maupun Distribution Resource Planning (DRP) mempunyai biaya distribusi tertentu. Pada penilaian ini akan dibandingkan (komparasi) biaya distribusi jika menggunakan Reorder Point dibandingkan dengan penggunaan DRP.

METODE

Studi literatur dilakukan terhadap berbagai referensiyang memuat berbagai teori-teori dan hasil penelitian yang telah dilakukan yang berkaitan dengan dengan Sistem Distribusi *Reorder Point* dan DRP.

Dalam suatu penelitian perlu adanya survei lapangan dan data-data sebagai penunjang untuk menyelesaikan masalah yang ada, karena baik survei lapangan maupun data-data yang diambil dan objek, sangat penting untuk perbaikan dalam melakukan analisis pembahasan masalah.

Perumusan masalah dilakukan untuk menelaah atau mempelajari objek yang akan diteliti. Dalam hal ini pendistribusian barang perusahaan mengalami kesulitan dalam mengantisipasi pola demand dari produk yang cenderung bersifat lumpy (tidak menentu, naik-turun secara mendadak), yang kemudian dilakukan perenungan dan pemikiran yang mendalam untuk menentukan metode yang tepat untuk memecahkan permasalahan dan akan dilakukan supaya menghasilkan penelitian yang bermanfaat.

Proses pengumpulan data dilakukan setelah mengetahui variabel-variabel serta parameter yang digunakan dalam kegiatan penelitian ini. Data yang dikumpulkan digunakan untuk menggali berbagai informasi mengenai penelitian distributor.

Peramalan merupakan dasar dari penerapan metode DRP dan Reorder Point. Dalam menentukan metode peramalan yang baik agar tidak terjadi kesalahan (forecast error) maka yang harus dijadikan sebagai acuan ialah 3 parameter yang sering digunakan yaitu bila nilai MAPE (Mean Absolut Procentage Errror), MAD (Mean Absolut Deviation), dan MSE (Mean Square Error). Dari beberapa model peramalan yang diajukan, model dengan MAPE atau MAD atau MSE (digunakan salah satu) terkecil yang dipakai untuk peramalan permintaan.

Pengolahan data untuk metode Reorder point:

Langkah pertama adalah menghitung Safety Stock, di sini Safety Stock = 0 karena fluktuasi jumlah permintaannya tidak terlalu jauh sehingga perusahaan tidak menetapkan adanya Safety Stock. Langkah kedua yang dilakukan adalah menghitung Reorder Point: Pengolahan data dengan menggunakan metode DRP.

Informasi hasil olahan dianalisis lebih lanjut dengan menggunakan alat-alat analisis yang sesuai dengan tujuan penelitian agar dapat menghasilkan kajian yang cukup tajam, mendalam dan luas. Setelah dilakukan analisis dan pembahasan data, maka dapat ditarik suatu kesimpulan yang sesuai berdasarkan tujuan penelitian.

HASIL DAN PEMBAHASAN

Dalam usahanya PT PAI menghasilkan Formalin dan Adhesive, Adhesive yang dihasilkan terdiri dari bermacam-macam jenis.

Tabel 1. Daftar Produk PT PAI Probolinggo

Type	Merk/kode	Kegunaan
Urea	UA – 125	Plywood Type II
Formaldehyde	UA - 104	Furniture/Mebel
	UA - 140	Partikel Board
Melamine	MA - 204	Plywood Type II
Formaldehyde		
Phenol	PA - 302	Marine Plywood
Formaldehyde		
Formalin	F-1	Bahan Pengawet

Data permintaan PT. PAI Probolinggo mulai bulan Januari 2005 sampai dengan Desember 2005, sebagaimana dapat disimak pada Tabel 2.

Tabel 2. Data Permintaan

Bulan	Produk				
Bulan	UA 125	UA 104	MA 204		
Januari 2005	1670	110	260		
Februari 2005	1775	139	280		
Maret 2005	1615	116	320		
April 2005	1652.5	97	340		
Mei 2005	1603	135	230		
Juni 2005	1564	100	295		
Juli 2005	1645	109	360		
Agustus 2005	1645	100	36		
September 2005	1642.5	115	285		
Oktober 2005	1652.5	119	282		
November 2005	1685	99	305		
Desember 2005	1702.5	113	250		

Produk yang masih tersisa atau belum terjual dalam gudang pada akhir bulan Desember 2005 (Tabel 3).

Lead Time antara Supplier dan Depo disesuaikan dengan kesepakatan bersama yang ditetapkan oleh perusahaan.

Perusahaan menetapkan *lead time* dalam mingguan karena di samping waktu pembuatan produk yang lama.

Data kendaraan. Kendaraan yang dipakai dalam pengiriman produk beserta kapasitasnya.

Uji kecukupan data. Disebarkan kuesioner sebanyak 80 buah dan yang kembali 77 buah, 2 buah tidak kembali dan 1 buah tidak lengkap.

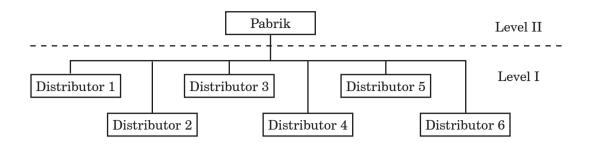
Biaya Simpan didapat dari pajak biaya persediaan barang sebesar 10% pertahun dari biaya pembelian per Ton untuk Warehouse.

Contoh Perhitungan Biaya Simpan untuk Warehouse: Pajak biaya persediaan = 10 % per Tahun 1 Tahun = 52 Minggu

Jadi Biaya simpan per Minggu = (Biaya pembelian \times 10%)/52

Keterangan:

Biaya Simpan meliputi: Penanganan dan pemeliharaan Risiko persediaan mati, kehilangan, kerusakan Biaya fasilitas penyimpanan Biaya penerimaan dan pengeluaran barang


Peramalan permintaan selama horizon perencanaan (6 bulan) dengan menggunakan bantuan software Minitab dan metode peramalan yang dievaluasi adalah Moving Average, Single Exponential Smoothing, Double Exponential Smoothing, dan Winter Method's. metode peramalan terbaik ditentukan berdasarkan nilai MAPE dari setiap metode.

Sebelum dilakukan pemilihan metode peramalan maka harus dipertimbangkan terlebih dahulu keakuratan metode peramalan yang digunakan, dalam hal ini dengan *Mean Absolut Procentage of Error* (MAPE), ditentukan bahwa nilai MAPE terkecil.

Dari hasil perhitungan Mean Absolut Procentage of Error (MAPE) menggunakan software minitab, maka akan dipilih suatu metode peramalan yang memberikan tingkat keakuratan tertinggi, yaitu ditentukan dengan hasil MAPE (yang dinyatakan dalam %) terkecil, metode terpilih untuk masingmasing produk dapat dilihat pada Tabel 4.

Tabel 3. Data Persediaan

Produk	Pasuruan	Gresik	Lumajang	Jawa Barat	Banjarnegara	Semarang
UA 125	140	80	5	15	90	120
UA 104	5	5	5	5	5	5
MA 204	40	25	0	10	0	10

Gambar 1. Data struktur jaringan distribusi PT. PAI Probolinggo

Tabel 4. Daftar Nilai Mape (Mean Absolute Procentage of Error) Terkecil

Produk	Metode Terpilih	Mape %
UA 125 Pas	Moving Average	7.37
UA 104 Pas	Dekomposisi	17.89
MA 204 Pas	Moving Average	14.83
UA 125 Gresik	Regresi Linear	9.84
UA 104 Gresik	Winter Method's	3.03
MA 204 Gresik	Winter Method's	8.76
UA 125 Lmjng	Regresi Linear	8.22
UA 104 Lmjng	Winter Method's	4.94
UA 125 JWB	Winter Method's	8.29
UA 104 JWB	Winter Method's	4.94
MA~204~JWB	Dekomposisi	11.8
UA 125 BNJR	Regresi Linear	5.02
UA 104 BNJR	Regresi Linear	19.01
UA~125~SMG	Regresi Linear	2.83
UA 104 SMG	Winter Method's	7.43
MA~204~SMG	Moving Average	6.93

Lot sizing adalah suatu proses untuk menentukan berapa jumlah pesanan optimal dan minimumkan biaya simpan dan pesan berdasarkan pada hasil perhitungan kebutuhan bersih.

Reorder point. Data yang dibutuhkan dalam melakukan perhitungan dengan menggunakan Reorder Point adalah data Lead Time, tingkat pemakaian bahan baku rata-rata (jumlah permintaan hasil peramalan) dan Safety Stock.

Rumus =
$$B = D \times L + S$$

Hasil yang diharapkan dari metode *Reorder Point* ini adalah mengetahui jadwal pendistribusian produk dari *supplier* ke konsumen dan mengetahui biaya yang akan dikeluarkan untuk melakukan pendistribusian produk tersebut.

Data yang diperlukan dalam perhitungan Reorder Point: 1) Data Inventory On Hand; 2) Data Demand (D) di dapat dari hasil peramalan permintaan; 3) Data Reorder Point.

Apabila On Hand Inventory lebih besardari batas Reorder Point tidak perlu melakukan pemesanan. Data yang dibutuhkan untuk pengerjaan DRP ini antara lain: Lead time, On hand inventory, dan Safety Stock. Contoh perhitungan DRP untuk berbagai metode dapat dilihat pada Tabel 5 sampai Tabel 10.

Hasil yang diharapkan dari metode DRP ini adalah sama dengan metode *Reorder Point* yaitu untuk mengetahui jadwal pendistribusian produk dari *supplier* ke konsumen dan mengetahui biaya yang akan dikeluarkan untuk melakukan pendistribusian produk tersebut.

Dalam melakukan analisis perbandingan biaya distribusi yaitu dengan memilih metode yang dapat memberikan perhitungan biaya terkecil. Di mana dalam perhitungan biaya distribusi dengan menggunakan metode Reorder Point berdasarkan pada rencana pesan untuk pengiriman produk yang meliputi biaya simpan dan biaya pesan, maka harus melalui metode pemesanan yang tepat.

Perhitungan Biaya Metode Reorder Point Produk UA 125 pada warehouse Pasuruan pada bulan Januari 2006

Frekuensi pemesanan

Banyaknya pemesanan yang dilakukan selama 6 Bulan.

Biaya pesan

- Biaya yang dikeluarkan untuk berapa kali frekuensi pemesanan
- $= 25 \times Rp50000 = Rp1250000$

Biaya Simpan

- = Total inventory (sediaan akhir) x Biaya simpan
- $= 30 \times Rp6538 = Rp196140$

Total = Biaya pesan + Biaya simpan

- = Rp. 1250000 + Rp. 196140
- = Rp. 1446140

Tabel 5. Contoh Perhitungan DRP dengan Metode LFL

Bulan			Jar	ıuari		
Minggu-ke	0	1	2	3	4	-
Periode	0	1	2	3	4	5
Kebutuhan Kotor	0	110	110	110	110	110
Sediaan awal	0	140	30	0	0	110
Sediaan akhir	140	30	0	0	0	110
Keb Bersih	0	0	80	110	110	110
Jumlah Pesan	0	0	80	110	110	$110 \\ 137.5$
Rencana Pesan	0	80	110	110	110	191.9

LFL On Hand = 140 Lead Time = 1 SS= 0 Lot Size = LFL

Tabel 6. Contoh Perhitungan DRP dengan Metode FOQ

Bulan		Januari						
Minggu-ke	0	1	2	3	4	5		
Periode	0	1	2	3	4	5		
Kebutuhan Kotor	0	110	110	110	110	110		
Sediaan awal	0	140	30	64	98	132		
Sediaan akhir	140	30	64	98	132	166		
Keb Bersih	0	0	0	0	0	0		
Jumlah Pesan	0	0	144	144	144	144		
Rencana Pesan	0	144	144	144	144	144		

 $FOQ\ On\ Hand = 140\ Lead\ Time = 1\ SS = 0\ Lot\ Size = FOQ = 144$

Tabel 7. Contoh Perhitungan DRP dengan Metode FPR

Bulan			Jani	ıari		
Minggu-ke	0	1	2	3	4	5
Periode	0	1	2	3	4	5
Kebutuhan Kotor	0	110	110	110	110	110
Sediaan awal	0	140	30	110	110	110
Sediaan akhir	140	30	110	110	110	137.5
Keb Bersih	0	0	80	0	0	0
Jumlah Pesan	0	0	190	110	110	137.5
Rencana Pesan	0	190	110	110	137.5	137.5

FPR On Hand = 140 Lead Time = 1 SS = 0 Lot Size = FPR

Tabel 8. Contoh Perhitungan DRP dengan Metode FOQ

Bulan			Jan	uari		
Minggu-ke	0	1	2	3	4	5
Periode	0	1	2	3	4	5
Kebutuhan Kotor	0	110	110	110	110	110
Sediaan awal	0	140	30	64	98	132
Sediaan akhir	140	30	64	98	132	166
Keb Bersih	0	0	0	0	0	0
Jumlah Pesan	0	0	144	144	144	144
Rencana Pesan	0	144	144	144	144	144

 $FOQ\ On\ Hand = 140\ Lead\ Time = 1\ SS = 0\ Lot\ Size = FOQ = 144$

Tabel 9. Contoh Perhitungan DRP dengan Metode FPR

Bulan			Jan	uari		
Minggu-ke	0	1	2	3	4	5
Periode	0	1	2	3	4	5
Kebutuhan Kotor	0	110	110	110	110	110
Sediaan awal	0	140	30	110	110	110
Sediaan akhir	140	30	110	110	110	137.5
Keb Bersih	0	0	80	0	0	0
Jumlah Pesan	0	0	190	110	110	137.5
Rencana Pesan	0	190	110	110	137. 5	137.5

FPR On Hand = 140 Lead Time = 1 SS = 0 Lot Size = FPR

Tabel 10. Contoh Perhitungan DRP dengan Metode EOQ

Bulan			Jan	uari		
Minggu-ke	0	1	2	3	4	5
Periode	0	1	2	3	4	5
Kebutuhan Kotor	0	110	110	110	110	110
Sediaan awal	0	140	30	145	35	150
Sediaan akhir	140	30	145	35	150	40
Keb Bersih	0	0	80	0	75	0
Jumlah Pesan	0	0	225	0	225	0
Rencana Pesan	0	225	0	225	0	225

 $EOQ\ On\ Hand = 140\ Lead\ Time = 1\ SS = 0\ Lot\ Size = EOQ = 225$

Tabel 11. Hasil Analisis Biaya dengan Metode *Reorder Point*

Warehouse	Biaya Simpan (RP)	Biaya Pesan (RP)	Biaya Total (RP)
Pasuruan	467362	3750000	4217362
Gresik	460938.6	15000000	15460938.6
Lumajang	443696.55	2700000	3143696.55
Jawa Barat	180413.4	23000000	23180413.4
Banjarnegara	984679	22500000	23484679
Semarang	611520	26250000	26861520
Total			96348609.55

Tabel 12. Biaya Pesan, Biaya Simpan dan Biaya Total dengan Metode Lot Terpilih

Warehouse	Metode Terpilih	Biaya Pesan	Biaya Simpan	Biaya Total
Pasuruan	Lot For Lot	4673	3700	4167
		62	000	362
Gresik	Lot For Lot	5376	1400	1453
		65.6	0000	7665.6
Lumajang	Fixed Period	2453	2100	4553
	Quantity	225.5	000	225.5
Jawa Barat	Lot For Lot	2660	1550	1576
		26.2	0000	6026.2
Banjarnegara	Lot For Lot	1582	2295	2310
		19.6	0000	8219.6
C	Lot For Lot	1961	2590	2609
Semarang	Lot For Lot	40	0000	6140
Total				8822
Total				8639

Perhitungan Biaya dengan Metode DRP

Jika distribusi produk dilakukan dengan metode DRP maka total biaya yang dibutuhkan adalah Rp88.228.639.

SIMPULAN

Bahwa dengan diterapkannya metode DRP dapat memberikan total biaya terkecil, yaitu Rp88.228.639 apabila kita menggunakan metode *Reorder Point* biaya totalnya adalah sebesar Rp96.348.609.55. jadi selisih antara biaya distribusi dengan metode DRP dan *Reorder Point* adalah Rp7.119.970.55.

Dari hasil perhitungan metode DRP maka dapat diperoleh rencana pengiriman barang dan inventori yang terjadi untuk bulan Januari 2006 sampai dengan bulan Juni 2006 dengan menggunakan keempat teknik *lot size* yaitu teknik *Lot For Lot* (LFL), *Fixed Order Quantity* (FOQ), *Fixed Order Requirement* (FPR) dan *Economic Order Quantity* (EOQ) di mana untuk rencana pengirimannya kita pilih teknik lot size yang dapat memberikan biaya yang paling minimal.

Dari hasil perhitungan *Reorder Point* didapatkan rencana pesan di mana pemesanannya

didasarkan pada perhitungan Reorder Point dan Inventory. Apabila On Hand Inventory lebih besar dari dibandingkan dengan batas Reorder Point sehingga tidak perlu melakukan pemesanan ke warehouse. Apabila On Hand Inventory lebih kecil dibandingkan dengan batas Reorder Pointnya maka perlu melakukan pemesanan sejumlah Order Quantity. Sehingga rencana pengiriman produk pada tiap warehouse.

DAFTAR PUSTAKA

Gasperz, V. 2002. Production Planning and Inventory Control Berdasarkan Pendekatan Sistem Terintegrasi

- MRP II dan JIT menuju Manufacturing 21. Jakarta: PT Gramedia Pustaka Utama.
- Zulfikarijah, F., 2005. Manajemen Persediaan. Jakarta. Penerbit UMM Press.
- Baroto, T., 2002. Perencanaan dan Pengendalian Produksi. Malang. Laboratorium Simulasi dan Optimasi Sistem Industri.
- Heizer dan Render, 1996. Production and Operation Management. New Jersey.
- Handoko, T. H., 1993. Dasar-dasar Manajemen Produksi dan Operasi. Yogyakarta.
- Eko Indarjit, Richardus dan Djoko Pranoto, Ricardus, 2003. *Manajemen Persediaan*. Jakarta: PT Gasindo.