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1. Introduction 

The flow shop scheduling problem is one of the best-known production scheduling 

problems. It has been classified into an NP-complete problem. There are n jobs processed 

on m machines in the same order in the pure flow shop scheduling problem. The operation 

of every job must be processed on machine k. The Permutation Flow Shop Scheduling 

Problem (PFSP) is the same job sequence in all machines. Permutation schedules do not 

always cover the optimal schedule except for the case of two machines [1]. PFSP assumed 

a Static and deterministic environment. The processing time and due date are known. 

Moreover, all job is available for processing from the beginning. Preemptions are not 

permitted when the job begins to be processed on a machine. It cannot be interrupted. One 

of the most relevant flow shop applications was found in the chemical industry. 

The primary purpose of the schedule is to find the optimal Job sequence. It is seen 

from some performance criteria, such as makespan, total flowtime, and mean lateness. 

Lateness measures the conformity of the schedule to a given due date. It has negative 

values whenever a job is completed early. Negative lateness represents earlier service 
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 In this paper, two types of discrete particle swarm optimization 

(DPSO) algorithms are presented to solve the Permutation Flow 

Shop Scheduling Problem (PFSP). We used criteria to minimize 

total earliness and total tardiness. The main contribution of this 

study was that a new position update method is developed based 

on the discrete domain because PFSP is represented as discrete 

job permutations. In addition, this article also comes with a 

simple case study to ensure that both the proposed algorithm can 

solve the problem well in a short computational time. Hybrid 

Discrete Particle Swarm Optimization (HDPSO) has a better 

performance than the Modified Particle Swarm Optimization 

(MPSO). The HDPSO produced the optimal solution. However, it 

has a slightly longer computation time. Besides, the population 

size and maximum iteration impact the quality of solutions 

produced by HDPSO and MPSO algorithms.  
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than requested. The positive lateness represents that later service than requested job 

earliness may cause fixed capital and inventory holding costs. Furthermore, job tardiness 

may disrupt a customer’s operations and incurring penalty fees. Therefore, both earliness 

and tardiness should be taken into account to determine the optimal machine scheduling 

policy. The sequence of jobs affects performance measures. Multiple objective functions 

are possible that the objective function is not optimal when other objective functions are 

optimized. There is a trade-off when there are two objective functions simultaneously 

optimized. Therefore, It is a multi-objective problem. 

Some exact and heuristic algorithms have been proposed over the past decades. 

These have been used for solving the PFSP with the objectives of minimizing total 

earliness and total tardiness. Scheduling problems with multiple performances is a 

combinatorial problem that is classified into the NP-Hard problem. The best method to 

solve the NP-Hard problem is heuristic [2]. Some research has used a metaheuristic 

method to solved PSFP problems for single objective and multi-objective problems. Some 

that metaheuristics such as Tabu Search (TS) [3-7], Genetic Algorithm (GA) [8-14], 

Simulated Annealing (SA) [15-17], Particle Swarm Optimization (PSO) [18-22]. However, 

a few research considers minimizing the total earliness and total tardiness simultaneously 

in PFSP.  

The PSO algorithm is an efficient algorithm for scheduling problems with various 

variations [23]. Originally, PSO has developed to solve continuous optimization problems. 

Scheduling is a discrete and combinatorial problem. This research modified PSO to solve 

the problem. This paper, This research proposes two PSO-based algorithms to find the 

optimal sequence in PFSP. This research used criteria minimizing total earliness and total 

tardiness simultaneously. The modifications are carried out by changing the speed update 

formula and by using a transition probability matrix. For the multi-objective function, we 

used the multi-objective function by Ronconi & Birgin [24]. This paper's main contribution 

is that a new position update method is developed to be applied to all classes of 

combinatorial optimization problems in the literature. The rest of the paper is organized 

as follows. Section 2 presents the assumption, mathematical model, proposed algorithm, 

case study, and parameter setting. Section 3 describes results and discussion, and Section 

4 is a conclusion and future work.  

 

2. Methods 

We modified some algorithms based on Hybrid Discrete Particle Swarm 

Optimization (HDPSO) algorithm by Clerc [25] and modified particle swarm optimization 

(MPSO) algorithm by Santosa, Siswanto & Putawama [26] to solve the PFSP problem. We 

modified the HDPSO and MPSO formulation to reach the global optimal point accurately 

and efficiently. 

2.1 Assumptions 

Generally, the scheduling problem is divided into two types: flow shop and job shop 

scheduling. The flow shop scheduling attracts the researcher [27]. In the PFSP, a set of 

jobs (N = 1,2,3,...n) be processed through the set of machines M (M=1,2,3,...,m) in the same 

order. The processing times of the jobs at the machines are known, non-negative, and 

deterministic. Furthermore, some assumptions PFSP problems: 1) all jobs are 

independent and they ready to be processed at time 0; 2) The machine is always available 

and ready to use (no damage); 3) Each machine only process one job at a time; 4) Each job 

only be processed on one machine at a time; 5) Any job that is being processed on one 

machine cannot be interrupted (no pre-emption); 6) Setup time is independent of the 
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sequence and is included in the processing time; 7) Storage capacity between stages of 

operation (in process storage) is unlimited [2]. In scheduling, the possible sequence if there 

are n jobs is n!. in most literature, the search for solutions to this problem is Permutation 

Flow Shop Scheduling Problem (PFSP). 

 

2.2 Mathematical Model 

The mathematical model in this paper is the modification of Ronconi & Birgin [24]. 

The model was developed by adding and changing constraints. The objective functions are 

minimizing total earliness and total tardiness. Two objective functions have some weight, 

and It to be minimized simultaneously. 

𝑖 : operation index 

𝑗 : job index 

𝑘 : machine index 

𝑝𝑗𝑘 : processing time of job 𝑗 at machine 𝑘 

𝑑𝑗 : due date of job 𝑗  

𝑆𝑖𝑗 : starting time of job 𝑗 at operation 𝑖 

𝐶𝑖𝑗 : completion time of job 𝑗 at operation 𝑖 

𝐸𝑗 : earliness time of job 𝑗  

𝑇𝑗 : tardiness time of job 𝑗  

𝑥𝑖𝑗 : binary variable, 1 if job 𝑗 at operation 𝑖 and 0 if not 

Min  ∑ 𝐸𝑗 + 𝑇𝑗
𝑛
𝑗=1               (1) 

Constraint  

𝑇𝑗 ≥  𝐶𝑗𝑚 − ∑ 𝑥𝑖𝑗𝑑𝑖
𝑛
𝑖=1   j = 1, 2, ..., n        (2) 

𝐸𝑗 ≥ ∑ 𝑥𝑖𝑗𝑑𝑖
𝑛
𝑖=1 − 𝐶𝑗𝑚  j = 1, 2, ..., n         (3) 

𝐶𝑗𝑚 = 𝑆𝑗𝑚 + ∑ 𝑥𝑖𝑗𝑝𝑖𝑚
𝑛
𝑖=1  j = 1, 2, ..., n             (4) 

𝑆𝑗+1,𝑘 ≥ 𝑆𝑗𝑘 + ∑ 𝑥𝑖𝑗𝑝𝑖𝑘
𝑛
𝑖=1  j = 1, 2, ..., n-1, k = 1, 2, ..., m     (5) 

𝑆𝑗,𝑘+1 ≥ 𝑆𝑗𝑘 + ∑ 𝑥𝑖𝑗𝑝𝑖𝑘
𝑛
𝑖=1  j = 1, 2, …, n, k = 1, 2, …, m-1           (6) 

𝑆11 ≥ 0                  (7) 
∑ 𝑥𝑖𝑗 = 1𝑛

𝑖=1    j = 1, 2, ..., n                        (8) 

∑ 𝑥𝑖𝑗 = 1𝑛
𝑗=1    j = 1, 2, ..., n                               (9) 

Equation (1) is the multi-objective function to minimize total earliness and total 

tardiness simultaneously. Constraint (2) show the formula tardiness of each job. 

Constraint (3) explain the individual earliness of each job. Equation (4) describe the 

completion time of each job on the last machine. Constraints (5) – (7) show the rules for 

the starting time of each job on each machine. Constraint (5) describes the starting times 

of consecutive jobs on a machine. Constraint (6) indicates the starting times of a job on 

two consecutive machines. Constraint (7) shows that the first job's starting time on the 

first machine must be non-negative. Constraints (8) and (9) ensure that a job is allocated 

to a sequence position. These ensure each sequence positions only one job. 

 

2.3 Proposed Algorithm  

PSO  is an algorithm based on swarm intelligence. It was proposed J. Kennedy and 

R. C. Eberhart [28]. PSO has three main components: particles, cognitive components, 

social components, and particle velocity. Moreover, each particle represents a solution. In 

Cognitive learning, pBest is the best position by a particle. Furthermore, gBest is the best 

position of the fundamental particle in the swarm. pBest is the best position of each 

particle among iterations. Moreover, gBest is the best of pBest. The disadvantage of PSO 
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is the possibility of being trapped at local optimal. It is occurred to solve discrete 

optimization problems such as job scheduling.  The modification by changing the updating 

mechanism can reduce the possibility of being trapped at local optimal. We developed two 

procedures. It is Hybrid Discrete Particle Swarm Optimization (HDPSO) and Modified 

Particle Swarm Optimization (MPSO). 

 

2.3.1 Hybrid Discrete Particle Swarm Optimization (HDPSO) 

Clerc [25] modified the Discrete Particle Swarm Optimization (DPSO) algorithm 

that Kennedy and Eberhart formulated. He modified the representation of the position of 

the particles, the shape of the velocity produced by the particles, and the effect of velocity 

on the position of the particles. The goal of these modifications is to be applied to problems 

with discrete models, especially types combinatorial. This research modified The structure 

of the DPSO algorithm by Clerc [25]: 

1. Particles position 

𝑥𝑖
𝑡 = [𝑥𝑖1

𝑡           𝑥𝑖2
𝑡     . .    𝑥𝑖𝑑

𝑡 ] 

Where, 𝑥𝑖
𝑡 is the position of the 𝑖𝑡ℎ-particle in the 𝑡𝑡ℎ-iteration and the particle have as 

many as 𝑑 dimensions. 

2. Transposition 

Transposition is a way to exchange two values on a particular dimension based on the 

index sequence of the position of the particles. 

3. Velocity 

Velocity, as much as ‖𝑣𝑖
𝑡‖ Transposition process between the two index positions. 

Velocity is defined as follows: 

𝑣𝑖
𝑡 = ((𝑎𝑘, 𝑏𝑘)), 𝑎 ∈ {1,2, … , 𝑑}, 𝑏 ∈ {1,2, … , 𝑑}, 𝑘 ↑1

‖𝑣𝑖
𝑡‖

 

‖𝑣𝑖
𝑡‖ is the number of lists of transpositions, 𝑎 and 𝑏 are the dimensional dimension 

indices that be exchanged for value. For example: 𝑣1 = ((1,3), (2,5)) and 𝑣2 =
((2,5), (1,3)), then 𝑣1 @ 𝑣2 said to be not the same; however, both are congruent. 

4. Opposite of velocity 

Based on point (3) above, it can be said that 𝑣1 is opposite of 𝑣2, that is 𝑣1 = ¬𝑣2 

moreover, it can be written 𝑣2 = ¬𝑣1. Therefore that the general form applies that 

¬¬𝑣 = 𝑣 and 𝑣 ⨁ ¬𝑣 ≅  ∅. 

If 𝑣𝑖
𝑡 = ((𝑎𝑘, 𝑏𝑘)), 𝑘 ↑1

‖𝑣𝑖
𝑡‖

, then ¬𝑣𝑖
𝑡 = ((𝑎𝑘, 𝑏𝑘)), 𝑘 ↓1

‖𝑣𝑖
𝑡‖

= ((𝑎‖𝑣𝑖
𝑡‖−𝑘+1, 𝑏‖𝑣𝑖

𝑡‖−𝑘+1)) , 𝑘 ↑1

‖𝑣𝑖
𝑡‖

 

Example: 

𝑣𝑖
𝑡 = ((1,3), (3,2), (4,5)) → 𝑣𝑖

𝑡 = ((𝑎1, 𝑏1), (𝑎2, 𝑏2), (𝑎3, 𝑏3)), ‖𝑣𝑖
𝑡‖ = 3 

¬𝑣𝑖
𝑡 = ((4,5), (3,2), (1,3)) 

¬¬𝑣𝑖
𝑡 = ((1,3), (3,2), (4,5)) 

5. Move  “position plus velocity.” 

Suppose the position update, 𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1 is operated by processing from the first 

sequence of transposition 𝑣 to position 𝑥, then the following sequence, until the final 

sequence of 𝑣.  

For example: 

𝑥1
0 = [2     5     1     3     4] → 𝑥𝑖

𝑡 = [𝑥𝑖1
𝑡      𝑥𝑖2

𝑡     . .    𝑥𝑖𝑑
𝑡 ] 

𝑣1
0 = ((1,3), (3,2), (4,5)) → 𝑣𝑖

𝑡 = ((𝑎1, 𝑏1), (𝑎2, 𝑏2), (𝑎3, 𝑏3)), ‖𝑣𝑖
𝑡‖ = 3 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1 

𝑥1
1 = 𝑥1

0 + 𝑣1
1 

𝑥1
1 = [2     5     1     3     4] + ((1,3), (3,2), (4,5)) 
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𝑥1
1 = [1     5     2     3     4] + ((3,2), (4,5)) 

𝑥1
1 = [1     2     5     3     4] + ((4,5)) 

𝑥1
1 = [1     2     5     4     3] 

6. Subtraction “position minus position.” 

For example, there are two positions 𝑥𝑖
𝑡 and 𝑥𝑖

𝑡+1. Subtraction 𝑥𝑖
𝑡+1 − 𝑥𝑖

𝑡 is defined as a 

velocity of 𝑣𝑖
𝑡+1. Therefore that by applying the velocity 𝑣𝑖

𝑡+1 into position 𝑥𝑖
𝑡 produce 

𝑥𝑖
𝑡+1. The difference is defined as follows: 

𝑥𝑖
𝑡+1 − 𝑥𝑖

𝑡 = 𝑣𝑖
𝑡+1 ↔ 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1 = 𝑥𝑖

𝑡+1 

if 𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡, then 𝑥𝑖
𝑡+1 − 𝑥𝑖

𝑡 = 𝑣𝑖
𝑡+1 = ∅. For example:  

𝑥1
1 = [1     2     5     4     3]  and  𝑥1

0 = [2     5     1     3     4] 

𝑣1
1 = 𝑥1

1 − 𝑥1
0 = ((1,3), (3,2), (4,5)) 

7. Addition “velocity plus velocity.” 

Suppose there are two speeds 𝑣1 and 𝑣2, to increase the speed of 𝑣1 with 𝑣2 (𝑣1 ⨁ 𝑣2), 

the addition operation is carried out using the transposition sequence 𝑣1 then proceed 

with the transposition sequence 𝑣2. Besides that, it can be defined as follows: 

𝑣 = 𝑣1 ⨁ 𝑣2 

𝑣 = ((𝑎1, 𝑏1), (𝑎2, 𝑏2), … , (𝑎‖𝑣1‖, 𝑏‖𝑣1‖)
1

) ⨁ ((𝑎1, 𝑏1), (𝑎2, 𝑏2), … , (𝑎‖𝑣2‖, 𝑏‖𝑣2‖)
2

) 

Example: 

𝑣1 = ((1,3), (3,2), (4,5))            𝑣2 = ((3,4), (4,1)) 

𝑣 = 𝑣1 ⨁ 𝑣2 = ((1,3), (3,2), (4,5)) ⨁ ((3,4), (4,1)) 

𝑣 = ((1,3), (3,2), (4,5), (3,4), (4,1)) 

8. Multiplication “coefficient times velocity.” 

Suppose that 𝑐 is a coefficient and (𝑐 ∈  R), then the multiplication between velocity 𝑣 

and 𝑐 can be carried out as follows according to the condition of the coefficient value. 

a. If 𝑐 = 0, then  
𝑣′ = 𝑐. 𝑣 

𝑣′‖ = 𝑐. ‖𝑣‖ 
𝑣′‖ = 0. ‖𝑣‖ 

𝑣′‖ = 0 
𝑣′ = ∅ 

b. If 0 < 𝑐 ≤ 1, 𝑣 cut to length: 𝑣′‖ = ⌈𝑐. ‖𝑣‖⌉. For example: 

𝑣 = ((1,3), (3,2), (4,5)) 

‖𝑣‖ = 3 
𝑣′ = 𝑐. 𝑣 

𝑣′‖ = ⌈0.1 ∗ 3⌉ = ⌈0.3⌉ = 1 

𝑣′ = ((1,3)) 

c. If 𝑐 > 1, then 𝑐 is formed from 𝑐 = 𝑘 + 𝑐′ which is 𝑘 = ⌊𝑐⌋, 𝑘 ∈ (𝑁 > 0), 𝑐′ = 𝑐 − 𝑘 dan 

0 < 𝑐′ < 1. So this case is defined as: 

𝑣′ = (∑ 𝑣

𝑘

1

) ⨁ (𝑐′ ∗ 𝑣) = 𝑣 ⨁ v ⨁ … ⨁ v ⨁ (𝑐′ ∗ 𝑣) 

(𝑐′. 𝑣) is calculated using conditions (b). 

Example: 

𝑣 = ((1,3), (3,2), (4,5)) 

‖𝑣‖ = 3 
𝑐 = 2,5 

𝑘 = ⌊𝑐⌋ = ⌊2,5⌋ = 2 and 𝑐′ = 𝑐 − 𝑘 = 2,5 − 2 = 0,5 
‖𝑣′‖ = ‖𝑣‖ + ‖𝑣‖ + (⌈𝑐′ ∗ ‖𝑣‖⌉) = 3 + 3 + ⌈0,5 ∗ 3⌉ = 3 + 3 + ⌈1,5⌉ 
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‖𝑣′‖ = 3 + 3 + 2 = 8 

𝑣′ = ((1,3), (3,2), (4,5)(1,3), (3,2), (4,5)(1,3), (3,2)) 

d. If 𝑐 < 1, then the velocity is reversed (𝑣 = ¬𝑣) using the concept on slide 8 and the 

value 𝑐 be positive 𝑐 = |𝑐|. Therefore that the latest velocity can be operated using 

the following function. 

𝑣′ = 𝑐. ¬𝑣, Where the value of 𝑐 be operated as in conditions (a), (b), and (c) in the 

previous slide. For example: 
𝑣′ = 𝑐. ¬𝑣 
𝑣′‖ = ⌈𝑐′ ∗ ‖¬𝑣‖⌉ = ⌈0,1 ∗ 3⌉ = ⌈0,3⌉ = 1 

𝑣′ = ((4,5)) 

 

9. Distance between two position 

The distance between the two particles is obtained by calculating the difference in the 

fitness value of the two positions. 

 

10. The position update formula that has been modified is defined as follows: 

𝑣𝑖
𝑡+1 = 𝑐1. 𝑣𝑖

𝑡 ⨁ 𝑐2 ((𝑝𝐵𝑒𝑠𝑡𝑖
𝑡 +

1

2
(𝑔𝐵𝑒𝑠𝑡𝑔

𝑡 − 𝑝𝐵𝑒𝑠𝑡𝑖
𝑡)) − 𝑥𝑖

𝑡)           (10) 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1                 (11) 

 

However, in its implementation, it was found that the PSO's particle speed was updated 

too quickly, and the minimum objective function value sought was often overlooked. 

Therefore, in this study, we changed the position update representation Clerc [25] using 

the speed update formula developed by Shi and Eberhart [29]. The change of 

representation is carried out, hoping that particles are better at approaching the 

optimal solution and not rapidly converging (early convergence).  

𝑣𝑖𝑗
𝑡+1 = 𝜃. 𝑣𝑖𝑗

𝑡 + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖𝑗
𝑡 − 𝑥𝑖𝑗

𝑡 ) + 𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡𝑔𝑗
𝑡 − 𝑥𝑖𝑗

𝑡 )             (12) 

𝑥𝑖𝑗
𝑡+1 = 𝑥𝑖𝑗

𝑡 + 𝑣𝑖𝑗
𝑡+1                     (13) 

Equation (10) is the result of improvements that have been made by adding an inertia 

term (𝜃) to reduce the speed of the speed update formula. Usually, the value of 𝜃 is 

made so that the higher the iteration is passed, the smaller the particle speed be. This 

value varies linearly in the range of 0.9 to 0.4. 

The weight of this inertia is proposed by Shi and Eberhart [29] to reduce speed during 

iterations, which allows the birds to converge the target points more accurately and 

efficiently. High inertia weight values add to the portion of the global exploration 

process, while low values emphasize local search. To not focus too much on one part and 

keep looking for a new search area in a particular dimension space, it is necessary to 

look for the inertial weight 𝜃 which equals keeping global and local searches. To achieve 

that and speed up convergence, an inertial weight that decreases in value by increasing 

iterations is used with the formula: 

𝜃𝑡 = 𝜃𝑚𝑎𝑥 − (
𝜃𝑚𝑎𝑥−𝜃𝑚𝑖𝑛

𝑖𝑚𝑎𝑥
) 𝑖         (14) 

where 𝜃𝑚𝑎𝑥 and 𝜃𝑚𝑖𝑛 are the initial and final inertia values, 𝑖𝑚𝑎𝑥 is the maximum 

number of iterations used, and 𝑖 is the current iteration. 

 

11. The stopping criteria are the number of maximum iteration. 

The pseudocode of the DPSO algorithm for the flow shop scheduling problem is 

presented in Fig. 1. 
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Begin 

t = 0 

for (𝑘 = 1, 𝑁) 

Generate the initial position of the particle (𝑥𝑖
𝑡) randomly, and set the initial velocity 

(𝑣𝑖
𝑡) = ∅ 

End 

𝑝𝐵𝑒𝑠𝑡𝑖
𝑡 = 𝑥𝑖

𝑡 

Calculate the fitness of each particle, then set as 𝑔𝐵𝑒𝑠𝑡𝑔
𝑡  

Do 

𝑡 =  𝑡 +  1 

Update velocity 𝑣𝑖
𝑡  

Update position 𝑥𝑖
𝑡 

Calculate the fitness value of each particle 

Update 𝑝𝐵𝑒𝑠𝑡𝑖
𝑡 and 𝑔𝐵𝑒𝑠𝑡𝑔

𝑡  

While (not stopping criteria) 

End 

Fig. 1. The proposed HDPSO algorithm structure 

 

2.3.2 Modified Particle Swarm Optimization (MPSO) 

The second proposed algorithm is a combination of the PSO algorithm with the 

probability transition matrix. This algorithm is called Modified Particle Swarm 

Optimization (MPSO) [26]. In this study, we modified the MPSO algorithm to solve the 

PFSP. The proposed algorithm be explained as follows. 

1. Particles position 

𝑥𝑖
𝑡 = [𝑥𝑖1

𝑡           𝑥𝑖2
𝑡     . .    𝑥𝑖𝑑

𝑡 ] 

Where, 𝑥𝑖
𝑡 is the position of the 𝑖𝑡ℎ-particle in the 𝑡𝑡ℎ-iteration, and the particle has as 

many as 𝑑 dimensions. It is expressed in a probability transition matrix that is 

randomly generated with intervals of 0 to 1. 

Example: 

𝑥𝑖
𝑡 = [0.1067    0.8687    0.4314    0.1361    0.8530] 

2. Solution sequence 

The solution sequence is generated based on the probability value of the transition 

matrix. Normalize first the probability transition matrix such that the probability value 

is more than equal to 0 and less than 1. 

Example: 

If  𝑥𝑖
𝑡 = [0.7749    1.2599    0.2638    0.5499   − 0.5132], it be normalized to 

     𝑥𝑖
𝑡 = [0.7749    1    0.2638    0.5499    0] moreover, be transposed to be a new solution. 

3. Transposition 

Transposition is a way to exchange values on a particular dimension based on the index 

sequence of the position of the particles (by ascending or descending order). 

Example: 

a. Transposition by ascending order 

𝑥𝑖
𝑡 = [0.1067    0.8687    0.4314    0.1361    0.8530] → 𝑠𝑖

𝑡 = [1    5    3    2    4] 
b. Transposition by descending order 

𝑥𝑖
𝑡 = [0.7749    1    0.2638    0.5499    0] → 𝑠𝑖

𝑡 = [2    1    4    3    5] 
4. Distance between two position 

The distance between the two particles is obtained by calculating the difference in the 

fitness value of the two positions. 
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5. The position update formula used in this algorithm refers to equations (12) and (13). 

6. The stopping criteria are the number of maximum iteration (itmax). 

The pseudocode of the MPSO algorithm for the flow shop scheduling problem is 

presented in Fig. 2. 

Begin 

t = 0 

for (𝑘 = 1, 𝑁) 

Generate the probability transition matrix (𝑥𝑖
𝑡) randomly [0,1], and set as the initial 

position of the particles  

Determine the initial solution based on the probability transition matrix by sorting the 

probability values of each particle in ascending or descending order. 

Set an initial velocity (𝑣𝑖
𝑡) = 0 

End 

𝑝𝐵𝑒𝑠𝑡𝑖
𝑡 = 𝑥𝑖

𝑡 

Calculate the fitness of each particle, then set as 𝑔𝐵𝑒𝑠𝑡𝑔
𝑡  

Do 
𝑡 =  𝑡 +  1 

Update velocity 𝑣𝑖
𝑡  

Update position 𝑥𝑖
𝑡 

Normalize the updated position and determine the new solution 

Calculate the fitness value of each particle 

Update 𝑝𝐵𝑒𝑠𝑡𝑖
𝑡 and 𝑔𝐵𝑒𝑠𝑡𝑔

𝑡  

While (not stopping criteria) 

End 

Fig. 2. The proposed MPSO algorithm structure 

 

2.4. The Case Study 

In this study, a case study was appointed by a cigarette company. The company 

produces a product if it receives orders from the customer. The company used a first-come-

first-served (FCFS) scheduling policy. It causes frequent delays in fulfilling order due 

dates. There are two types of lateness [1], such as tardiness and earliness. Each job must 

be processed in seven stages (machines) in the same order. The Job index, processing time, 

and due date are shown in Table 1. 

 

Table 1. The Job index, processing time, and due date 
Job 

Index 

Due 

Date 

(day) 

Processing Time (day) 

M1 M2 M3 M4 M5 M6 M7 

1 31 7.62 10.99 25.97 4.76 12.99 0.67 5.00 

2 10 1.90 2.75 6.49 1.19 3.25 0.17 1.25 

3 15 3.81 5.49 12.99 2.38 6.49 0.33 2.50 

4 3 0.38 0.55 1.30 0.24 0.65 0.03 0.25 

5 10 1.90 2.75 6.49 1.19 3.25 0.17 1.25 

6 6 0.95 1.37 3.25 0.60 1.62 0.08 0.63 

7 10 1.90 2.75 6.49 1.19 3.25 0.17 1.25 

8 9 1.30 1.87 4.42 0.81 2.21 0.11 0.85 

9 9 1.30 1.87 4.43 0.81 2.21 0.11 0.85 

10 9 1.30 1.88 4.44 0.81 2.22 0.11 0.86 

11 6 0.95 1.37 3.25 0.60 1.62 0.08 0.63 

12 4 0.67 0.96 2.27 0.42 1.14 0.06 0.44 

13 1 0.19 0.27 0.65 0.12 0.32 0.02 0.13 
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2.5 Parameter Setting 

In experimental, We used some scenarios in the combination of tests. It consists of 

9 combination parameters: population size (N) and the maximum number of iterations 

(itmax). Population used 10, 50, 100,  Iteration used 50, 250, 500. In addition, we set the 

other  PSO parameters such as a) learning factor (𝑐1 = 𝑐2 = 1); b) inertia term (𝜃𝑚𝑖𝑛 = 0,4 

and 𝜃𝑚𝑎𝑥 = 0,9) [30]. Each combination of parameters was tested for ten replications. The 

computational process was carried out with the help of Matlab R2017a software. It is 

carried out on computers Intel® Core ™ i3-6006U CPU Processor @ 2.00GHz (4 CPUs). To 

evaluate the performance of HDPSO and MPSO algorithms, a paired t-test was carried 

out at the 95% significance level. [30]. On the other hand, the population and iteration 

affect the solution's quality and computational time. The test was conducted by the 

analysis of variance (ANOVA). 

 

3 Results And Discussion 

In this section, we compare the FCFS and the proposed algorithm. The 

computational test was carried out using nine combinations of PSO algorithm parameters. 

The evaluation results are presented in Table 2. 

 

Table 2. computational result 

N Itmax FCFS 
Optimal 

Solution 

HDPSO MPSO 

Avg Std Min t Avg Std Min t 

10 

50 1000.29 291.05 315.42 12.81 297.81 27.82 328.25 25.75 298.93 23.55 

250 1000.29 291.05 297.73 6.26 291.06 173.26 315.09 17.82 291.06 113.99 

500 1000.29 291.05 293.17 1.91 291.05 270.99 299.45 6.38 291.09 236.43 

50 

50 1000.29 291.05 295.78 3.73 291.06 177.27 311.01 15.81 291.05 222.22 

250 1000.29 291.05 291.26 0.65 291.05 1074.93 293.97 2.94 291.05 678.26 

500 1000.29 291.05 291.05 0.00 291.05 1795.06 292.72 2.99 291.05 1447.39 

100 

50 1000.29 291.05 291.05 0.00 291.05 491.34 291.28 0.49 291.05 358.62 

250 1000.29 291.05 291.05 0.00 291.05 1702.39 291.05 0.00 291.05 1614.39 

500 1000.29 291.05 291.05 0.00 291.05 2956.09 291.05 0.00 291.05 2894.57 

 

Based on the computation test in Table 2, the proposed algorithms produce better 

solutions than the company's solution. The proposed algorithm gave an optimal solution 

in a short time. In addition, the HDPSO algorithm has a better performance than the 

MPSO algorithm. However, HDPSO has a slightly longer computation time. Based on the 

paired t-test result (Table 3), the null hypothesis was rejected. It shows the difference 

between the HDPSO and MPSO algorithms. HDPSO produced better results than MPSO. 

However, HDPSO was computationally longer than MPSO. 

Table 4 shows the ANOVA results. The population size (N) and maximum iteration 

(itmax) influence the quality of solutions HDPSO and MPSO algorithms. The alternative 

is that interaction does exist between the two factors. The ANOVA table shows a p-value 

of 0,003812 for HDPSO and 1,91E-09 for MPSO, which is smaller than α = 0.05.  It 

indicates differences in the quality of solutions produced between the various population 

size categories and iteration. 
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Table 3. paired t-test results for proposed algorithms 
a) t-Test: Paired Two Sample for Means   

b) t-Test: Paired Two Sample for Means 

  315.417 328.247    27.82032 23.54685 

Mean 292.7693 298.2038  Mean 1080.165 945.7334 

Variance 6.85226 92.68847  Variance 1008077 947334.4 

Observations 8 8  Observations 8 8 

Pearson Correlation 0.993048   Pearson Correlation 0.988093  
Hypothesized Mean 

Difference 0   

Hypothesized Mean 

Difference 0  

Df 7   Df 7  

t Stat -2.18502   t Stat 2.443385  

P(T<=t) one-tail 0.032578   P(T<=t) one-tail 0.022269  

t Critical one-tail 1.894579   t Critical one-tail 1.894579  

P(T<=t) two-tail 0.065156   P(T<=t) two-tail 0.044537  

t Critical two-tail 2.364624    t Critical two-tail 2.364624   
a) based on the average solution; b) based on the computational time  

 

Table 4. Two-factor ANOVA result for proposed algorithms 
a) ANOVA (HDPSO test)    

Source of Variation SS df MS F P-value F crit 

Sample 8267,508 2 4133,754 28,85902 3,45E-10 3,109311 

Columns 3833,363 2 1916,682 13,38095 9,52E-06 3,109311 

Interaction 2410,405 4 602,6011 4,206946 0,003812 2,484441 

Within 11602,41 81 143,2396    

Total 26113,68 89         

b) ANOVA (MPSO test)       

Source of Variation SS df MS F P-value F crit 

Sample 2134,902 2 1067,451 43,41859 1,53E-13 3,109311 

Columns 1381,738 2 690,8688 28,1011 5,38E-10 3,109311 

Interaction 1522,312 4 380,5781 15,48002 1,91E-09 2,484441 

Within 1991,395 81 24,58512    

Total 7030,347 89         

 

5. Conclusion  

The computational results show that the proposed algorithms were successful in 

solving the PFSP.  It produces an optimal solution in the total earliness and total tardiness 

criterion. HDPSO produced better results than MPSO. However, HDPSO was 

computationally longer than MPSO. As future work, the proposed algorithms can be 

applied to the larger classes of combinatorial optimization problems in the literature. They 

can be compared with other intelligent swarm algorithms. 
 

References 

[1] Y.-D. Kim, "Minimizing total tardiness in permutation flowshops," European 

Journal of Operational Research, vol. 85, pp. 541-555, 1995.  

https://doi.org/10.1016/0377-2217(94)00029-C. 

[2] M. Avriel, M. Penn, and N. J. D. A. M. Shpirer, "Container ship stowage problem: 

complexity and connection to the coloring of circle graphs," Discrete Applied 

Mathematics, vol. 103, pp. 271-279, 2000.  https://doi.org/10.1016/S0166-

218X(99)00245-0. 

https://doi.org/10.1016/0377-2217(94)00029-C
https://doi.org/10.1016/S0166-218X(99)00245-0
https://doi.org/10.1016/S0166-218X(99)00245-0


Jurnal Teknik Industri ISSN : 1978-1431 print | 2527-4112 online 

Vol. 20, No. 2, August 2019, pp. 105-116 115 

 
 

 

 
Please cite this article as: Amallynda, I. (2019). The Discrete Particle Swarm Optimization Algorithms for Permutation 

Flowshop Scheduling Problem. Jurnal Teknik Industri, 20(2), 105-116. 

doi:https://doi.org/10.22219/JTIUMM.Vol20.No2.105-116 

 

[3] V. A. Armentano and J. E.  Claudio, "An application of a multi-objective tabu search 

algorithm to a bicriteria flowshop problem," Journal of Heuristics, vol. 10, pp. 463-

481, 2004.  https://doi.org/10.1023/B:HEUR.0000045320.79875.e3. 

[4] J.-S. Chen, J. C.-H. Pan, and C.-K. Wu, "Hybrid tabu search for re-entrant 

permutation flow-shop scheduling problem," Expert Systems with Applications, vol. 

34, pp. 1924-1930, 2008.  https://doi.org/10.1016/j.eswa.2007.02.027. 

[5] B. Ekşioğlu, S. D. Ekşioğlu, and P. C. Jain, "A tabu search algorithm for the 

flowshop scheduling problem with changing neighborhoods," Computers & 

Industrial Engineering, vol. 54, pp. 1-11, 2008.  

https://doi.org/10.1016/j.cie.2007.04.004. 

[6] F. S. Erenay, I. Sabuncuoglu, A. Toptal, and M. K. Tiwari, "New solution methods 

for single machine bicriteria scheduling problem: Minimization of average flowtime 

and number of tardy jobs," European Journal of Operational Research,  vol. 201, 

pp. 89-98, 2010.  https://doi.org/10.1016/j.ejor.2009.02.014. 

[7] Y. Marinakis, and M. J. C. Marinaki, "A hybrid multi-swarm particle swarm 

optimization algorithm for the probabilistic traveling salesman problem," 

Computers & Operations Research, vol. 37, pp. 432-442, 2010.  

https://doi.org/10.1016/j.cor.2009.03.004. 

[8] C.-W. Chiou, W.-M. Chen, C.-M. Liu, and M.-C. Wu, "A genetic algorithm for 

scheduling dual flow shops," Expert Systems with Applications, vol. 39, pp. 1306-

1314, 2012.  https://doi.org/10.1016/j.eswa.2011.08.008. 

[9] W.-H. Wu, W.-H. Wu, J.-C. Chen, W.-C. Lin, J. Wu, and C.-C. Wu, "A heuristic-

based genetic algorithm for the two-machine flowshop scheduling with learning 

consideration," Journal of Manufacturing Systems, vol. 35, pp. 223-233, 2015.  

https://doi.org/10.1016/j.jmsy.2015.02.002. 

[10] N. Karimi, and H. J. C. Davoudpour, "A high performing metaheuristic for multi-

objective flowshop scheduling problem," Computers & operations research, vol. 52, 

pp. 149-156, 2014.  https://doi.org/10.1016/j.cor.2014.01.006. 

[11] H. F. Rahman, R. Sarker, and D. Essam, "A genetic algorithm for permutation 

flowshop scheduling under practical make-to-order production system," Computers 

& Industrial Engineering, vol. 31, pp. 87-103, 2017.  

https://doi.org/10.1017/S0890060416000196. 

[12] S. A. Basir, M. M. Mazdeh, and M. J. C. Namakshenas, "Bi-level genetic algorithms 

for a two-stage assembly flow-shop scheduling problem with batch delivery 

system," Computers & Industrial Engineering, vol. 126, pp. 217-231, 2018.  

https://doi.org/10.1016/j.cie.2018.09.035. 

[13] C. Yu, Q. Semeraro, and A. J. C. Matta, "A genetic algorithm for the hybrid flow 

shop scheduling with unrelated machines and machine eligibility," Computers & 

Operations Research, vol. 100, pp. 211-229, 2018.  

https://doi.org/10.1016/j.cor.2018.07.025. 

[14] X. Liu, L. Wang, L. Kong, F. Li, and J. J. Li, "A Hybrid Genetic Algorithm for 

Minimizing Energy Consumption in Flow Shops Considering Ultra-low Idle State," 

Procedia CIRP, vol. 80, pp. 192-196, 2019.  

https://doi.org/10.1016/j.procir.2018.12.013. 

[15] T. Varadharajan and C. J. Rajendran, "A multi-objective simulated-annealing 

algorithm for scheduling in flowshops to minimize the makespan and total flowtime 

of jobs," European Journal of Operational Research, vol. 167, pp. 772-795, 2005.  

https://doi.org/10.1016/j.ejor.2004.07.020. 

[16] M. Bank, S. F. Ghomi, F. Jolai, and J. Behnamian, "Application of particle swarm 

optimization and simulated annealing algorithms in flow shop scheduling problem 

https://doi.org/10.1023/B:HEUR.0000045320.79875.e3
https://doi.org/10.1016/j.eswa.2007.02.027
https://doi.org/10.1016/j.cie.2007.04.004
https://doi.org/10.1016/j.ejor.2009.02.014
https://doi.org/10.1016/j.cor.2009.03.004
https://doi.org/10.1016/j.cor.2009.03.004
https://doi.org/10.1016/j.eswa.2011.08.008
https://doi.org/10.1016/j.jmsy.2015.02.002
https://doi.org/10.1016/j.cor.2014.01.006
https://doi.org/10.1017/S0890060416000196
https://doi.org/10.1016/j.cie.2018.09.035
https://doi.org/10.1016/j.cor.2018.07.025
https://doi.org/10.1016/j.procir.2018.12.013
https://doi.org/10.1016/j.ejor.2004.07.020


ISSN : 1978-1431 print | 2527-4112 online  Jurnal Teknik Industri 

116 Vol. 20, No. 2, August 2019, pp. 105-116  

 

 

 
Please cite this article as: Amallynda, I. (2019). The Discrete Particle Swarm Optimization Algorithms for Permutation 

Flowshop Scheduling Problem. Jurnal Teknik Industri, 20(2), 105-116. 

doi:https://doi.org/10.22219/JTIUMM.Vol20.No2.105-116 

 

under linear deterioration," Advances in Engineering Software, vol. 47, pp. 1-6, 

2012.  https://doi.org/10.1016/j.advengsoft.2011.12.001. 

[17] P. Jarosław, S. Czesław, and Ż. Dominik, "Optimizing bicriteria flow shop 

scheduling problem by simulated annealing algorithm," Procedia Computer 

Science, vol. 18, pp. 936-945, 2013.  https://doi.org/10.1016/j.procs.2013.05.259. 

[18] C.-J. Liao, C.-T. Tseng, and P. Luarn, "A discrete version of particle swarm 

optimization for flowshop scheduling problems," Computers & Operations 

Research, vol. 34, pp. 3099-3111, 2007.  https://doi.org/10.1016/j.cor.2005.11.017. 

[19] S. Ponnambalam, N. Jawahar, and S. Chandrasekaran, "Discrete particle swarm 

optimization algorithm for flowshop scheduling," in Particle Swarm Optimization, 

ed: IntechOpen, 2009. https://www.intechopen.com/download/pdf/6275. 

[20] F. P. Goksal, I. Karaoglan, and F. Altiparmak, "A hybrid discrete particle swarm 

optimization for vehicle routing problem with simultaneous pickup and delivery," 

Computers & Industrial Engineering, vol. 65, pp. 39-53, 2013.  

https://doi.org/10.1016/j.cie.2012.01.005. 

[21] X. Zheng, S. Zhou, and H. Chen, "Ant colony optimisation algorithms for two-stage 

permutation flow shop with batch processing machines and nonidentical job sizes," 

International Journal of Production Research, vol. 57, pp. 3060-3079, 2019.  

https://doi.org/10.1080/00207543.2018.1529445. 

[22] S. Sheikh, G. Komaki, and V. Kayvanfar, "Multi objective two-stage assembly flow 

shop with release time," Computers & Industrial Engineering, vol. 124, pp. 276-

292, 2018.  https://doi.org/10.1016/j.cie.2018.07.023. 

[23] B. Jarraya and A. Bouri, "Metaheuristic optimization backgrounds: a literature 

review," International Journal of Contemporary Business Studies, vol. 3, pp. 31-44, 

2012.  https://ssrn.com/abstract=2114335. 

[24] D. P. Ronconi and E. G. Birgin, "Mixed-integer programming models for flowshop 

scheduling problems minimizing the total earliness and tardiness," in Just-in-Time 

systems, ed: Springer, 2012, pp. 91-105. https://doi.org/10.1007/978-1-4614-1123-

9_5. 

[25] M. Clerc, "Discrete particle swarm optimization, illustrated by the traveling 

salesman problem," in New optimization techniques in engineering, ed: Springer, 

2004, pp. 219-239. https://doi.org/10.1007/978-3-540-39930-8_8. 

[26] B. Santosa and N. Siswanto, "Discrete particle swarm optimization to solve multi-

objective limited-wait hybrid flow shop scheduling problem," in IOP Conference 

Series: Materials Science and Engineering, 2018, p. 012006. 

https://doi.org10.1088/1757-899x/337/1/012006.  

[27] L. A. J. Zurich, "Operations Research in Production Planning, Scheduling and 

Inventory Control," Journal of the Operational Research Society, vol. 26, pp. 568-

569, 1975.  https://doi.org/10.1057/jors.1975.120. 

[28] J. Kennedy and R. Eberhart, "Particle swarm optimization (PSO)," in Proc. IEEE 

International Conference on Neural Networks, Perth, Australia, 1995, pp. 1942-

1948.  

[29] Y. Shi and R. C. Eberhart, "Parameter selection in particle swarm optimization," 

in International conference on evolutionary programming, 1998, pp. 591-600.  

https://doi.org/10.1007/BFb0040810. 

[30] R. Gangadharan and C. Rajendran, "Heuristic algorithms for scheduling in the no-

wait flowshop," International Journal of Production Economics, vol. 32, pp. 285-

290, 1993.  https://doi.org/10.1016/0925-5273(93)90042-J.  

https://doi.org/10.1016/j.advengsoft.2011.12.001
https://doi.org/10.1016/j.procs.2013.05.259
https://doi.org/10.1016/j.cor.2005.11.017
https://www.intechopen.com/download/pdf/6275
https://doi.org/10.1016/j.cie.2012.01.005
https://doi.org/10.1080/00207543.2018.1529445
https://doi.org/10.1016/j.cie.2018.07.023
https://ssrn.com/abstract=2114335
https://doi.org/10.1007/978-1-4614-1123-9_5
https://doi.org/10.1007/978-1-4614-1123-9_5
https://doi.org/10.1007/978-3-540-39930-8_8
https://doi.org10.1088/1757-899x/337/1/012006
https://doi.org/10.1057/jors.1975.120
https://doi.org/10.1007/BFb0040810
https://doi.org/10.1016/0925-5273(93)90042-J

