Implementation of agricultural technology urban farming agrivoltaic based system to increase productivity and empowerment of farmer women’s community

Authors

  • Moh. Hafidhuddin Karim Physics Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang
  • Markus Diantoro Physics Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang
  • N. Nasikhudin Physics Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang
  • Sri Rahayu Lestari Biology Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang

DOI:

https://doi.org/10.22219/jcse.v4i1.25103

Keywords:

Agrivoltaic, agricultural, Productivity, Empowerment, Urban

Abstract

The need for food and the need for community empowerment, the fulfillment of new and renewable energy and productive economic activity continue to increase in line with the explosive rate of population growth, this is also what underlies the joint targets of the SDGs in points 2, 5, 7 and 8. The Cemara Hijau Farm (KWT CHF) Farmer Women's Group located in the urban area of Malang city needs solving problems in the form of land expansion, access to sustainable irrigation, and optimum irradiation of crops. In this technology implementation activity, it is carried out to increase the active role of women and increase the agricultural productivity of KWT CHF with various limitations owned. Urban Farming with the vertical concept of agrivoltaic hydroponics can maximize land use in urban areas and photovoltaic-powered LED growlight irradiation can maximize energy and reduce operational costs. Implementation is carried out with the stages of Socialization, Installation, Collaboration, Training, Monitoring and Evaluation. The results of this activity are (1) agrivoltaic technology with a capacity of 1.35 kWh, (2) planting point capacity that can be created 476 points on an area of 8 m2, (3) utilization of circulation tubs as fish farming ponds covering an area of 6 m2 with a capacity of 60 fish, and (4) a 24-hour irradiation system with LED growlight. This community service program can increase the agricultural productivity of KWT CHF, provide added value activities, and reduce agricultural operational costs so that it has a positive impact on sustainable economic value for KWT CHF. For further development, a broader follow-up implementation is needed by involving many regional points by making pilot projects at KWT CHF as pilots for other regions.

Downloads

Download data is not yet available.

References

Arizona, R., Rahman, J., Farradina, S., Zaim, Z., & Titisari, P. (2022). Rekayasa Growth Light LED Berbasis Solar Cell untuk Percepatan Pertumbuhan Tanaman Hidroponik Pada Usaha “Sidomulyo Hidroponik.” Dinamisia : Jurnal Pengabdian Kepada Masyarakat, 6(3), 596–602. https://doi.org/10.31849/dinamisia.v6i3.9184

BPS, B. P. S. (2023). Persentase Penduduk Kota Terhadap Populasi, Badan Pusat Statistik. https://www.bps.go.id/statictable/2014/02/18/1276/persentase-penduduk-daerah-perkotaan-menurut-provinsi-2010-2035.html

Campana, P. E., Stridh, B., Amaducci, S., & Colauzzi, M. (2021). Optimisation of vertically mounted agrivoltaic systems. Journal of Cleaner Production, 325, 129091. https://doi.org/10.1016/j.jclepro.2021.129091

Chae, S.-H., Kim, H. J., Moon, H.-W., Kim, Y. H., & Ku, K.-M. (2022). Agrivoltaic Systems Enhance Farmers’ Profits through Broccoli Visual Quality and Electricity Production without Dramatic Changes in Yield, Antioxidant Capacity, and Glucosinolates. Agronomy, 12(6), 1415. https://doi.org/10.3390/agronomy12061415

Choi, C. S., Ravi, S., Siregar, I. Z., Dwiyanti, F. G., Macknick, J., Elchinger, M., & Davatzes, N. C. (2021). Combined land use of solar infrastructure and agriculture for socioeconomic and environmental co-benefits in the tropics. Renewable and Sustainable Energy Reviews, 151, 111610. https://doi.org/10.1016/j.rser.2021.111610

David, L. H., Pinho, S. M., Agostinho, F., Costa, J. I., Portella, M. C., Keesman, K. J., & Garcia, F. (2022). Sustainability of urban aquaponics farms: An emergy point of view. Journal of Cleaner Production, 331, 129896. https://doi.org/10.1016/j.jclepro.2021.129896

Hartikainen, S. M., Pieristè, M., Lassila, J., & Robson, T. M. (2020). Seasonal Patterns in Spectral Irradiance and Leaf UV-A Absorbance Under Forest Canopies. Frontiers in Plant Science, 10, 1762. https://doi.org/10.3389/fpls.2019.01762

Jakhongir Turakul Ugli, T. (2019). The Importance of Alternative Solar Energy Sources and the Advantages and Disadvantages of Using Solar Panels in this Process. American Journal of Software Engineering and Applications, 8(1), 32. https://doi.org/10.11648/j.ajsea.20190801.14

Khan, N., Ray, R. L., Sargani, G. R., Ihtisham, M., Khayyam, M., & Ismail, S. (2021). Current Progress and Future Prospects of Agriculture Technology: Gateway to Sustainable Agriculture. Sustainability, 13(9), 4883. https://doi.org/10.3390/su13094883

Ma, Y., Xu, A., & Cheng, Z.-M. (Max). (2021). Effects of light emitting diode lights on plant growth, development and traits a meta-analysis. Horticultural Plant Journal, 7(6), 552–564. https://doi.org/10.1016/j.hpj.2020.05.007

Matysiak, B. (2021). The Effect of Supplementary LED Lighting on the Morphological and Physiological Traits of Miniature Rosa × Hybrida ‘Aga’ and the Development of Powdery Mildew (Podosphaera pannosa) under Greenhouse Conditions. Plants, 10(2), 417. https://doi.org/10.3390/plants10020417

Muhammad, H. (2022). BPS: Pertanian Salah Satu Leading Sector Tumpuan Ekonomi Indonesia | Republika Online. https://www.republika.co.id/berita/rkzdqx380/bps-pertanian-salah-satu-leading-sector-tumpuan-ekonomi-indonesia

Pamuji, F. A., Riawan, D. C., Soedibyo, S., Suryoatmojo, H., & Ashari, M. (2022). Automatic Solar Hidroponik Berbasis Energi Surya dengan Kontrol pH dan Nutrisi Guna Meningkatkan Produktivitas Kelompok Hidroponik Simomulyo, Kota Surabaya. Sewagati, 7(1). https://doi.org/10.12962/j26139960.v7i1.116

Pollard, G., Ward, J., & Koth, B. (2017). Aquaponics in Urban Agriculture: Social Acceptance and Urban Food Planning. Horticulturae, 3(2), 39. https://doi.org/10.3390/horticulturae3020039

Rahma Sari, Dewi Maharani, Sindi Nurcahyanti, , Nur Aqabah Rahman, & Muhammad Kadir. (2022). Pemberdayaan Masyarakat Melalui Implementasi Small Scale Smart Fertigation (S3F) pada Urban Farming Budidaya Tanaman Sayuran Memanfaatkan Lahan Pekarangan di Kelurahan Adatongeng Kabupaten Maros. SAFARI :Jurnal Pengabdian Masyarakat Indonesia, 2(4), 53–61. https://doi.org/10.56910/safari.v2i4.168

Rahman, M. M., Field, D. L., Ahmed, S. M., Hasan, M. T., Basher, M. K., & Alameh, K. (2021). LED Illumination for High-Quality High-Yield Crop Growth in Protected Cropping Environments. Plants, 10(11), 2470. https://doi.org/10.3390/plants10112470

Reasoner, M., & Ghosh, A. (2022). Agrivoltaic Engineering and Layout Optimization Approaches in the Transition to Renewable Energy Technologies: A Review. Challenges, 13(2), 43. https://doi.org/10.3390/challe13020043

Renreng, I., Sule, L., Mangkau, A., Djafar, Z., Azis, N., & Sakka, A. (2022). Smart Hidroponik Berbasis Energi Surya untuk Urban Farming di Kabupaten Gowa. 5.

Septya, F., Rosnita, R., Yulida, R., & Andriani, Y. (2022). Urban farming sebagai upaya ketahanan pangan keluarga di Kelurahan Labuh Baru Timur Kota Pekanbaru. RESWARA: Jurnal Pengabdian Kepada Masyarakat, 3(1), 105–114. https://doi.org/10.46576/rjpkm.v3i1.1552

Sukunora, Y. I. (2022). Pemberdayaan masyarakat berbasis urban farming di Desa Kepuhkembeng, RT 01/02 Kec. Peterongan, Kab. Jombang, Jawa Timur. JPM17: Jurnal Pengabdian Masyarakat, 7(2), 95–103. https://doi.org/10.30996/jpm17.v7i2.6799

Toledo, C., & Scognamiglio, A. (2021). Agrivoltaic Systems Design and Assessment: A Critical Review, and a Descriptive Model towards a Sustainable Landscape Vision (Three-Dimensional Agrivoltaic Patterns). Sustainability, 13(12), 6871. https://doi.org/10.3390/su13126871

Tripathi, A. D., Mishra, R., Maurya, K. K., Singh, R. B., & Wilson, D. W. (2019). Estimates for World Population and Global Food Availability for Global Health. In The Role of Functional Food Security in Global Health (pp. 3–24). Elsevier. https://doi.org/10.1016/B978-0-12-813148-0.00001-3

Trommsdorff, M., Kang, J., Reise, C., Schindele, S., Bopp, G., Ehmann, A., Weselek, A., Högy, P., & Obergfell, T. (2021). Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany. Renewable and Sustainable Energy Reviews, 140, 110694. https://doi.org/10.1016/j.rser.2020.110694

Walston, L. J., Barley, T., Bhandari, I., Campbell, B., McCall, J., Hartmann, H. M., & Dolezal, A. G. (2022). Opportunities for agrivoltaic systems to achieve synergistic food-energy-environmental needs and address sustainability goals. Frontiers in Sustainable Food Systems, 6, 932018. https://doi.org/10.3389/fsufs.2022.932018

Zheng, J., Meng, S., Zhang, X., Zhao, H., Ning, X., Chen, F., Abaker Omer, A. A., Ingenhoff, J., & Liu, W. (2021). Increasing the comprehensive economic benefits of farmland with Even-lighting Agrivoltaic Systems. PLOS ONE, 16(7), e0254482. https://doi.org/10.1371/journal.pone.0254482

Downloads

Published

2023-03-03

How to Cite

Karim, M. H., Diantoro, M., Nasikhudin, N., & Lestari, S. R. (2023). Implementation of agricultural technology urban farming agrivoltaic based system to increase productivity and empowerment of farmer women’s community . Journal of Community Service and Empowerment, 4(1), 184–195. https://doi.org/10.22219/jcse.v4i1.25103

Issue

Section

Articles