Intelligent Automation Of Fraud Detection And Investigation:A Bibliometric Analysis Approach
DOI:
https://doi.org/10.22219/jrak.v13i3.28487Keywords:
Bibliometrics, Fraud Detection, Systematic Literature Review (SLR)Abstract
Purpose:This study aims to examine the use of intelligent automation in the process of detecting and investigating fraud.
Methodology/approach:This research is a bibliometric-based systematic literature review (SLR) related to fraud detection. The research sample consisted of 75 articles obtained from the Science Direct, Emerald Insight, IEE, and MDPI databases for the period 2020–2023.
Findings: The results of the research show that machine learning and deep learning are the most popular fraud detection techniques used by researchers, and the field of credit card fraud is the most popular field used as a research object. The fields of property insurance, health, cyber phishing, taxation, Shell companies, social programs, Ponzi schemes, and supply chain management are the ones that have the least amount of research, namely only one article for each of these fields.
Practical implications: The result show that there are smart tools in detecting fraud in several fields, but it has not been explained whether the existence of these tools can reduce fraud.
Originality/value: This research provides novelty in the use of intelligent automation in the process of detecting and investigating fraud.
Downloads
References
DAFTAR PUSTAKA
Abidi, W. U. H., Daoud, M. S., Ihnaini, B., Khan, M. A., Alyas, T., Fatima, A., & Ahmad, M. (2021). Real-Time Shill Bidding Fraud Detection Empowered With Fussed Machine Learning. IEEE Access, 9, 113612-113621. https://doi.org/10.1109/access.2021.3098628
ACFE. (2022). Occupational Fraud 2022: A Report to The Nations.
Afriyie, J. K., Tawiah, K., Pels, W. A., Addai-Henne, S., Dwamena, H. A., Owiredu, E. O., Ayeh, S. A., & Eshun, J. (2023). A supervised machine learning algorithm for detecting and predicting fraud in credit card transactions. Decision Analytics Journal, 6. https://doi.org/10.1016/j.dajour.2023.100163
Al-Hashedi, K. G., & Magalingam, P. (2021). Financial fraud detection applying data mining techniques: A comprehensive review from 2009 to 2019. Computer Science Review, 40. https://doi.org/10.1016/j.cosrev.2021.100402
Alarfaj, F. K., Malik, I., Khan, H. U., Almusallam, N., Ramzan, M., & Ahmed, M. (2022). Credit Card Fraud Detection Using State-of-the-Art Machine Learning and Deep Learning Algorithms. IEEE Access, 10, 39700-39715. https://doi.org/10.1109/access.2022.3166891
Ali, A., Abd Razak, S., Othman, S. H., Eisa, T. A. E., Al-Dhaqm, A., Nasser, M., Elhassan, T., Elshafie, H., & Saif, A. (2022). Financial Fraud Detection Based on Machine Learning: A Systematic Literature Review. Applied Sciences, 12(19). https://doi.org/10.3390/app12199637
Ali, M. A., Azad, M. A., Parreno Centeno, M., Hao, F., & van Moorsel, A. (2019). Consumer-facing technology fraud: Economics, attack methods and potential solutions. Future Generation Computer Systems, 100, 408-427. https://doi.org/10.1016/j.future.2019.03.041
Amponsah, A. A., Adekoya, A. F., & Weyori, B. A. (2022). A novel fraud detection and prevention method for healthcare claim processing using machine learning and blockchain technology. Decision Analytics Journal, 4. https://doi.org/10.1016/j.dajour.2022.100122
Ashtiani, M. N., & Raahemi, B. (2022). Intelligent Fraud Detection in Financial Statements Using Machine Learning and Data Mining: A Systematic Literature Review. IEEE Access, 10, 72504-72525. https://doi.org/10.1109/access.2021.3096799
Azevedo, C. d. S., Gonçalves, R. F., Gava, V. L., & Spinola, M. d. M. (2021). A Benford’s Law based methodology for fraud detection in social welfare programs: Bolsa Familia analysis. Physica A: Statistical Mechanics and its Applications, 567. https://doi.org/10.1016/j.physa.2020.125626
Bagga, S., Anish, G., Gupta, N., & Goyal, A. (2020). Credit Card Fraud Detection using Pipeling and Ensemble Learning. Procedia Computer Science, Volume 173, 2020, Pages 104-112. https://doi.org/https://doi.org/10.1016/j.procs.2020.06.014
Barraclough, P. A., Fehringer, G., & Woodward, J. (2021). Intelligent cyber-phishing detection for online. Computers & Security, 104. https://doi.org/10.1016/j.cose.2020.102123
Batool, A., & Byun, Y.-C. (2022). An Ensemble Architecture Based on Deep Learning Model for Click Fraud Detection in Pay-Per-Click Advertisement Campaign. IEEE Access, 10, 113410-113426. https://doi.org/10.1109/access.2022.3211528
Benedek, B., Ciumas, C., & Nagy, B. Z. (2022). Automobile insurance fraud detection in the age of big data – a systematic and comprehensive literature review. Journal of Financial Regulation and Compliance, 30(4), 503-523. https://doi.org/10.1108/JFRC-11-2021-0102
Błaszczyński, J., de Almeida Filho, A. T., Matuszyk, A., Szeląg, M., & Słowiński, R. (2021). Auto loan fraud detection using dominance-based rough set approach versus machine learning methods. Expert Systems with Applications, 163. https://doi.org/10.1016/j.eswa.2020.113740
Chen, K., Yadaw, A., Khan, A., & Zhu, K. (2020). Credit Fraud Detection Based on Hybrid Credit Scoring Model. International Conference on Computational Intelligence and Data Science (ICCIDS 2019) https://doi.org/https://doi.org/10.1016/j.procs.2020.03.176
Chen, L., Jia, N., Zhao, H., Kang, Y., Deng, J., & Ma, S. (2022). Refined analysis and a hierarchical multi-task learning approach for loan fraud detection. Journal of Management Science and Engineering, 7(4), 589-607. https://doi.org/10.1016/j.jmse.2022.06.001
Cherif, A., Badhib, A., Ammar, H., Alshehri, S., Kalkatawi, M., & Imine, A. (2023). Credit card fraud detection in the era of disruptive technologies: A systematic review. Journal of King Saud University - Computer and Information Sciences, 35(1), 145-174. https://doi.org/10.1016/j.jksuci.2022.11.008
Craja, P., Kim, A., & Lessmann, S. (2020). Deep learning for detecting financial statement fraud. Decision Support Systems, 139. https://doi.org/10.1016/j.dss.2020.113421
Dhieb, N., Ghazzai, H., Besbes, H., & Massoud, Y. (2020). A Secure AI-Driven Architecture for Automated Insurance Systems: Fraud Detection and Risk Measurement. IEEE Access, 8, 58546-58558. https://doi.org/10.1109/access.2020.2983300
Dornadulaa, V. N., & Sa, G. (2019). Credit Card Fraud Detection using Machine Learning Algorithms. Procedia Computer Science 165 (2019) 631–641. https://doi.org/10.1016/j.procs.2020.01.057
Dumitrescu, B., Baltoiu, A., & Budulan, S. (2022). Anomaly Detection in Graphs of Bank Transactions for Anti Money Laundering Applications. IEEE Access, 10, 47699-47714. https://doi.org/10.1109/access.2022.3170467
El Naby, A. A., El-Din Hemdan, E., & El-Sayed, A. (2021). Deep Learning Approach for Credit Card Fraud Detection 2021 International Conference on Electronic Engineering (ICEEM),
Esenogho, E., Mienye, I. D., Swart, T. G., Aruleba, K., & Obaido, G. (2022). A Neural Network Ensemble With Feature Engineering for Improved Credit Card Fraud Detection. IEEE Access, 10, 16400-16407. https://doi.org/10.1109/access.2022.3148298
Fan, S., Fu, S., Xu, H., & Cheng, X. (2021). Al-SPSD: Anti-leakage smart Ponzi schemes detection in blockchain. Information Processing & Management, 58(4). https://doi.org/10.1016/j.ipm.2021.102587
Farbmacher, H., Löw, L., & Spindler, M. (2022). An explainable attention network for fraud detection in claims management. Journal of Econometrics, 228(2), 244-258. https://doi.org/10.1016/j.jeconom.2020.05.021
Flegel, U., Vayssière, J., & Bitz, G. (2010). A State of the Art Survey of Fraud Detection Technology. In Insider Threats in Cyber Security (pp. 73-84). https://doi.org/10.1007/978-1-4419-7133-3_4
Forough, J., & Momtazi, S. (2021). Ensemble of deep sequential models for credit card fraud detection. Applied Soft Computing, 99. https://doi.org/10.1016/j.asoc.2020.106883
Fursov, I., Kovtun, E., Rivera-Castro, R., Zaytsev, A., Khasyanov, R., Spindler, M., & Burnaev, E. (2022). Sequence Embeddings Help Detect Insurance Fraud. IEEE Access, 10, 32060-32074. https://doi.org/10.1109/access.2022.3149480
Goecks, L. S., Korzenowski, A. L., Gonçalves Terra Neto, P., de Souza, D. L., & Mareth, T. (2022). Anti‐money laundering and financial fraud detection: A systematic literature review. Intelligent Systems in Accounting, Finance and Management, 29(2), 71-85. https://doi.org/10.1002/isaf.1509
Gomes, C., Jin, Z., & Yang, H. (2021). Insurance fraud detection with unsupervised deep learning. Journal of Risk and Insurance, 88(3), 591-624. https://doi.org/10.1111/jori.12359
Grossi, M., Ibrahim, N., Radescu, V., Loredo, R., Voigt, K., von Altrock, C., & Rudnik, A. (2022). Mixed Quantum–Classical Method for Fraud Detection With Quantum Feature Selection. IEEE Transactions on Quantum Engineering, 3, 1-12. https://doi.org/10.1109/tqe.2022.3213474
Hashemi, S. K., Mirtaheri, S. L., & Greco, S. (2023). Fraud Detection in Banking Data by Machine Learning Techniques. IEEE Access, 11, 3034-3043. https://doi.org/10.1109/access.2022.3232287
Hilal, W., Gadsden, S. A., & Yawney, J. (2022). Financial Fraud: A Review of Anomaly Detection Techniques and Recent Advances. Expert Systems with Applications, 193. https://doi.org/10.1016/j.eswa.2021.116429
Ileberi, E., Sun, Y., & Wang, Z. (2021). Performance Evaluation of Machine Learning Methods for Credit Card Fraud Detection Using SMOTE and AdaBoost. IEEE Access, 9, 165286-165294. https://doi.org/10.1109/access.2021.3134330
Jullum, M., Løland, A., Huseby, R. B., Ånonsen, G., & Lorentzen, J. (2020). Detecting money laundering transactions with machine learning. Journal of Money Laundering Control, 23(1), 173-186. https://doi.org/10.1108/jmlc-07-2019-0055
Kalid, S. N., Ng, K.-H., Tong, G.-K., & Khor, K.-C. (2020). A Multiple Classifiers System for Anomaly Detection in Credit Card Data With Unbalanced and Overlapped Classes. IEEE Access, 8, 28210-28221. https://doi.org/10.1109/access.2020.2972009
Kapadiya, K., Patel, U., Gupta, R., Alshehri, M. D., Tanwar, S., Sharma, G., & Bokoro, P. N. (2022). Blockchain and AI-Empowered Healthcare Insurance Fraud Detection: an Analysis, Architecture, and Future Prospects. IEEE Access, 10, 79606-79627. https://doi.org/10.1109/access.2022.3194569
Karadayi, Y., Aydin, M. N., & Ogrenci, A. S. (2020). Unsupervised Anomaly Detection in Multivariate Spatio-Temporal Data Using Deep Learning: Early Detection of COVID-19 Outbreak in Italy. IEEE Access, 8, 164155-164177. https://doi.org/10.1109/access.2020.3022366
Kolli, C. S., & Tatavarthi, U. D. (2020). Fraud detection in bank transaction with wrapper model and Harris water optimization-based deep recurrent neural network. Kybernetes, 50(6), 1731-1750. https://doi.org/10.1108/k-04-2020-0239
Koreff, J., Weisner, M., & Sutton, S. G. (2021). Data analytics (ab) use in healthcare fraud audits. International Journal of Accounting Information Systems, 42. https://doi.org/10.1016/j.accinf.2021.100523
Lebichot, B., Verhelst, T., Le Borgne, Y.-A., He-Guelton, L., Oble, F., & Bontempi, G. (2021). Transfer Learning Strategies for Credit Card Fraud Detection. IEEE Access, 9, 114754-114766. https://doi.org/10.1109/access.2021.3104472
Lee, J., & Cho, S. (2021, Nov). Abuse detection in healthcare insurance with disease-treatment network embedding. J Biomed Inform, 123, 103936. https://doi.org/10.1016/j.jbi.2021.103936
Li, Z., Huang, M., Liu, G., & Jiang, C. (2021). A hybrid method with dynamic weighted entropy for handling the problem of class imbalance with overlap in credit card fraud detection. Expert Systems with Applications, 175. https://doi.org/10.1016/j.eswa.2021.114750
Lokanan, M. E., & Sharma, K. (2022). Fraud prediction using machine learning: The case of investment advisors in Canada. Machine Learning with Applications, 8. https://doi.org/10.1016/j.mlwa.2022.100269
Lucas, Y., Portier, P.-E., Laporte, L., He-Guelton, L., Caelen, O., Granitzer, M., & Calabretto, S. (2020). Towards automated feature engineering for credit card fraud detection using multi-perspective HMMs. Future Generation Computer Systems, 102, 393-402. https://doi.org/10.1016/j.future.2019.08.029
Mao, X. H. S. X. Z. J. L. (2021). Financial fraud detection using the related-party transaction knowledge graph. Procedia Computer Science 199 (2022) 733–740. https://doi.org/https://doi.org/10.1016/j.procs.2022.01.091
Matloob, I., Khan, S. A., & Rahman, H. U. (2020). Sequence Mining and Prediction-Based Healthcare Fraud Detection Methodology. IEEE Access, 8, 143256-143273. https://doi.org/10.1109/access.2020.3013962
Nguyen, N., Duong, T., Chau, T., Nguyen, V.-H., Trinh, T., Tran, D., & Ho, T. (2022). A Proposed Model for Card Fraud Detection Based on CatBoost and Deep Neural Network. IEEE Access, 10, 96852-96861. https://doi.org/10.1109/access.2022.3205416
Olowookere, T. A., & Adewale, O. S. (2020). A framework for detecting credit card fraud with cost-sensitive meta-learning ensemble approach. Scientific African, 8. https://doi.org/10.1016/j.sciaf.2020.e00464
Omair, B., & Alturki, A. (2020). A Systematic Literature Review of Fraud Detection Metrics in Business Processes. IEEE Access, 8, 26893-26903. https://doi.org/10.1109/access.2020.2971604
Patrick Laurent, T. C., Elsa Herzberg. (2015). Intelligent automation entering the business world.
Pourhabibi, T., Ong, K.-L., Kam, B. H., & Boo, Y. L. (2020). Fraud detection: A systematic literature review of graph-based anomaly detection approaches. Decision Support Systems, 133. https://doi.org/10.1016/j.dss.2020.113303
Pranto, T. H., Hasib, K. T. A. M., Rahman, T., Haque, A. B., Islam, A. K. M. N., & Rahman, R. M. (2022). Blockchain and Machine Learning for Fraud Detection: A Privacy-Preserving and Adaptive Incentive Based Approach. IEEE Access, 10, 87115-87134. https://doi.org/10.1109/access.2022.3198956
Rai, A. K. K. D., Rajendra (2020). Fraud Detection in Credit Card Data using Unsupervised Machine Learning Based Scheme. Proceedings of the International Conference on Electronics and Sustainable Communication Systems (ICESC 2020). https://doi.org/10.1109/ICESC48915.2020.9155615
Rocha-Salazar, J.-d.-J., Segovia-Vargas, M.-J., & Camacho-Miñano, M.-d.-M. (2022). Detection of shell companies in financial institutions using dynamic social network. Expert Systems with Applications, 207. https://doi.org/10.1016/j.eswa.2022.117981
Rodrigues, V. F., Policarpo, L. M., da Silveira, D. E., da Rosa Righi, R., da Costa, C. A., Barbosa, J. L. V., Antunes, R. S., Scorsatto, R., & Arcot, T. (2022, 2022/11/01/). Fraud detection and prevention in e-commerce: A systematic literature review. Electronic Commerce Research and Applications, 56, 101207. https://doi.org/https://doi.org/10.1016/j.elerap.2022.101207
Sahni, S., Mittal, A., Kidwai, F., Tiwari, A., & Khandelwal, K. (2020). InsuranceFraudIdentificationusingComputerVisionandIoT:A Study of Field Fires. International Conference on Smart Sustainable Intelligent Computing and Applications under ICITETM2020. https://doi.org/https://doi.org/10.1016/j.procs.2020.06.008
Sánchez-Aguayo, M., Urquiza-Aguiar, L., & Estrada-Jiménez, J. (2021). Fraud Detection Using the Fraud Triangle Theory and Data Mining Techniques: A Literature Review. Computers, 10(10). https://doi.org/10.3390/computers10100121
Seify, M., Sepehri, M., Hosseinian-far, A., & Darvish, A. (2022, 2022/01/01/). Fraud Detection in Supply Chain with Machine Learning. IFAC-PapersOnLine, 55(10), 406-411. https://doi.org/https://doi.org/10.1016/j.ifacol.2022.09.427
Severino, M. K., & Peng, Y. (2021). Machine learning algorithms for fraud prediction in property insurance: Empirical evidence using real-world microdata. Machine Learning with Applications, 5. https://doi.org/10.1016/j.mlwa.2021.100074
Song, J., Qu, X., Hu, Z., Li, Z., Gao, J., & Zhang, J. (2021). A subgraph-based knowledge reasoning method for collective fraud detection in E-commerce. Neurocomputing, 461, 587-597. https://doi.org/10.1016/j.neucom.2021.03.134
Song, Z. (2020). A Data Mining Based Fraud Detection Hybrid Algorithm in E-bank 2020 International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE),
Taha, A. A., & Malebary, S. J. (2020). An Intelligent Approach to Credit Card Fraud Detection Using an Optimized Light Gradient Boosting Machine. IEEE Access, 8, 25579-25587. https://doi.org/10.1109/access.2020.2971354
Takefuji, Y. (2023). Case report on enormous economic losses caused by fraud from Japan to the world. Journal of Economic Criminology, 1. https://doi.org/10.1016/j.jeconc.2023.100003
Thaifur, A., Maidin, M. A., Sidin, A. I., & Razak, A. (2021). How to detect healthcare fraud? "A systematic review". Gac Sanit, 35 Suppl 2, S441-S449. https://doi.org/10.1016/j.gaceta.2021.07.022
Tingfei, H., Guangquan, C., & Kuihua, H. (2020). Using Variational Auto Encoding in Credit Card Fraud Detection. IEEE Access, 8, 149841-149853. https://doi.org/10.1109/access.2020.3015600
Vanhoeyveld, J., Martens, D., & Peeters, B. (2020). Value-added tax fraud detection with scalable anomaly detection techniques. Applied Soft Computing, 86. https://doi.org/10.1016/j.asoc.2019.105895
Vaughan, G. (2020). Efficient big data model selection with applications to fraud detection. International Journal of Forecasting, 36(3), 1116-1127. https://doi.org/10.1016/j.ijforecast.2018.03.002
Wang, H., Wang, W., Liu, Y., & Alidaee, B. (2022). Integrating Machine Learning Algorithms With Quantum Annealing Solvers for Online Fraud Detection. IEEE Access, 10, 75908-75917. https://doi.org/10.1109/access.2022.3190897
Westland, J. C. (2022). A comparative study of frequentist vs Bayesian A/B testing in the detection of E-commerce fraud. Journal of Electronic Business & Digital Economics, 1(1/2), 3-23. https://doi.org/10.1108/jebde-07-2022-0020
Wu, Y., Xu, Y., & Li, J. (2021). Fraudulent traffic detection in online advertising with bipartite graph propagation algorithm. Expert Systems with Applications, 185. https://doi.org/10.1016/j.eswa.2021.115573
Xia, H., Ma, H., & Cheng, P. (2021). PE‐EDD: An efficient peer‐effect‐based financial fraud detection approach in publicly traded China firms. CAAI Transactions on Intelligence Technology, 7(3), 469-480. https://doi.org/10.1049/cit2.12057
Xiuguo, W., & Shengyong, D. (2022). An Analysis on Financial Statement Fraud Detection for Chinese Listed Companies Using Deep Learning. IEEE Access, 10, 22516-22532. https://doi.org/10.1109/access.2022.3153478
Yan, C., Li, Y., Liu, W., Li, M., Chen, J., & Wang, L. (2020). An artificial bee colony-based kernel ridge regression for automobile insurance fraud identification. Neurocomputing, 393, 115-125. https://doi.org/10.1016/j.neucom.2017.12.072
Zhang, X., Han, Y., Xu, W., & Wang, Q. (2021). HOBA: A novel feature engineering methodology for credit card fraud detection with a deep learning architecture. Information Sciences, 557, 302-316. https://doi.org/10.1016/j.ins.2019.05.023
Zhou, H., Sun, G., Fu, S., Wang, L., Hu, J., & Gao, Y. (2021). Internet Financial Fraud Detection Based on a Distributed Big Data Approach With Node2vec. IEEE Access, 9, 43378-43386. https://doi.org/10.1109/access.2021.3062467
Zhou, S., He, J., Yang, H., Chen, D., & Zhang, R. (2020). Big Data-Driven Abnormal Behavior Detection in Healthcare Based on Association Rules. IEEE Access, 8, 129002-129011. https://doi.org/10.1109/access.2020.3009006
Zhu, H., Liu, G., Zhou, M., Xie, Y., Abusorrah, A., & Kang, Q. (2020). Optimizing Weighted Extreme Learning Machines for imbalanced classification and application to credit card fraud detection. Neurocomputing, 407, 50-62. https://doi.org/10.1016/j.neucom.2020.04.078
Zhu, X., Ao, X., Qin, Z., Chang, Y., Liu, Y., He, Q., & Li, J. (2021, Nov 28). Intelligent financial fraud detection practices in post-pandemic era. Innovation (Camb), 2(4), 100176. https://doi.org/10.1016/j.xinn.2021.100176
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Lummatul Mahya, Tarjo Tarjo, Zuraidah Mohd Sanusi
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Jurnal Reviu Akuntansi dan Keuangan is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).