Intelligent Automation Of Fraud Detection And Investigation:A Bibliometric Analysis Approach

Authors

  • Lummatul Mahya Fakultas Ekonomi dan Bisnis, Universitas Trunojoyo Madura, Bangkalan, Indonesia
  • Tarjo Tarjo Fakultas Ekonomi dan Bisnis, Universitas Trunojoyo Madura, Bangkalan, Indonesia
  • Zuraidah Mohd Sanusi Accounting Research Institute, University Teknologi MARA, Shah Alam, Malaysia
  • Fitri Ahmad Kurniawan Fakultas Ekonomi dan Bisnis, Universitas Trunojoyo Madura, Bangkalan, Indonesia

DOI:

https://doi.org/10.22219/jrak.v13i3.28487

Keywords:

Bibliometrics, Fraud Detection, Systematic Literature Review (SLR)

Abstract

Purpose:This study aims to examine the use of intelligent automation in the process of detecting and investigating fraud.

Methodology/approach:This research is a bibliometric-based systematic literature review (SLR) related to fraud detection. The research sample consisted of 75 articles obtained from the Science Direct, Emerald Insight, IEE, and MDPI databases for the period 2020–2023.

Findings: The results of the research show that machine learning and deep learning are the most popular fraud detection techniques used by researchers, and the field of credit card fraud is the most popular field used as a research object. The fields of property insurance, health, cyber phishing, taxation, Shell companies, social programs, Ponzi schemes, and supply chain management are the ones that have the least amount of research, namely only one article for each of these fields.

Practical implications: The result show that there are smart tools in detecting fraud in several fields, but it has not been explained whether the existence of these tools can reduce fraud.

Originality/value: This research provides novelty in the use of intelligent automation in the process of detecting and investigating fraud.

 

Downloads

Download data is not yet available.

Author Biography

Tarjo Tarjo, Fakultas Ekonomi dan Bisnis, Universitas Trunojoyo Madura, Bangkalan, Indonesia

Akuntansi

References

DAFTAR PUSTAKA

Abidi, W. U. H., Daoud, M. S., Ihnaini, B., Khan, M. A., Alyas, T., Fatima, A., & Ahmad, M. (2021). Real-Time Shill Bidding Fraud Detection Empowered With Fussed Machine Learning. IEEE Access, 9, 113612-113621. https://doi.org/10.1109/access.2021.3098628

ACFE. (2022). Occupational Fraud 2022: A Report to The Nations.

Afriyie, J. K., Tawiah, K., Pels, W. A., Addai-Henne, S., Dwamena, H. A., Owiredu, E. O., Ayeh, S. A., & Eshun, J. (2023). A supervised machine learning algorithm for detecting and predicting fraud in credit card transactions. Decision Analytics Journal, 6. https://doi.org/10.1016/j.dajour.2023.100163

Al-Hashedi, K. G., & Magalingam, P. (2021). Financial fraud detection applying data mining techniques: A comprehensive review from 2009 to 2019. Computer Science Review, 40. https://doi.org/10.1016/j.cosrev.2021.100402

Alarfaj, F. K., Malik, I., Khan, H. U., Almusallam, N., Ramzan, M., & Ahmed, M. (2022). Credit Card Fraud Detection Using State-of-the-Art Machine Learning and Deep Learning Algorithms. IEEE Access, 10, 39700-39715. https://doi.org/10.1109/access.2022.3166891

Ali, A., Abd Razak, S., Othman, S. H., Eisa, T. A. E., Al-Dhaqm, A., Nasser, M., Elhassan, T., Elshafie, H., & Saif, A. (2022). Financial Fraud Detection Based on Machine Learning: A Systematic Literature Review. Applied Sciences, 12(19). https://doi.org/10.3390/app12199637

Ali, M. A., Azad, M. A., Parreno Centeno, M., Hao, F., & van Moorsel, A. (2019). Consumer-facing technology fraud: Economics, attack methods and potential solutions. Future Generation Computer Systems, 100, 408-427. https://doi.org/10.1016/j.future.2019.03.041

Amponsah, A. A., Adekoya, A. F., & Weyori, B. A. (2022). A novel fraud detection and prevention method for healthcare claim processing using machine learning and blockchain technology. Decision Analytics Journal, 4. https://doi.org/10.1016/j.dajour.2022.100122

Ashtiani, M. N., & Raahemi, B. (2022). Intelligent Fraud Detection in Financial Statements Using Machine Learning and Data Mining: A Systematic Literature Review. IEEE Access, 10, 72504-72525. https://doi.org/10.1109/access.2021.3096799

Azevedo, C. d. S., Gonçalves, R. F., Gava, V. L., & Spinola, M. d. M. (2021). A Benford’s Law based methodology for fraud detection in social welfare programs: Bolsa Familia analysis. Physica A: Statistical Mechanics and its Applications, 567. https://doi.org/10.1016/j.physa.2020.125626

Bagga, S., Anish, G., Gupta, N., & Goyal, A. (2020). Credit Card Fraud Detection using Pipeling and Ensemble Learning. Procedia Computer Science, Volume 173, 2020, Pages 104-112. https://doi.org/https://doi.org/10.1016/j.procs.2020.06.014

Barraclough, P. A., Fehringer, G., & Woodward, J. (2021). Intelligent cyber-phishing detection for online. Computers & Security, 104. https://doi.org/10.1016/j.cose.2020.102123

Batool, A., & Byun, Y.-C. (2022). An Ensemble Architecture Based on Deep Learning Model for Click Fraud Detection in Pay-Per-Click Advertisement Campaign. IEEE Access, 10, 113410-113426. https://doi.org/10.1109/access.2022.3211528

Benedek, B., Ciumas, C., & Nagy, B. Z. (2022). Automobile insurance fraud detection in the age of big data – a systematic and comprehensive literature review. Journal of Financial Regulation and Compliance, 30(4), 503-523. https://doi.org/10.1108/JFRC-11-2021-0102

Błaszczyński, J., de Almeida Filho, A. T., Matuszyk, A., Szeląg, M., & Słowiński, R. (2021). Auto loan fraud detection using dominance-based rough set approach versus machine learning methods. Expert Systems with Applications, 163. https://doi.org/10.1016/j.eswa.2020.113740

Chen, K., Yadaw, A., Khan, A., & Zhu, K. (2020). Credit Fraud Detection Based on Hybrid Credit Scoring Model. International Conference on Computational Intelligence and Data Science (ICCIDS 2019) https://doi.org/https://doi.org/10.1016/j.procs.2020.03.176

Chen, L., Jia, N., Zhao, H., Kang, Y., Deng, J., & Ma, S. (2022). Refined analysis and a hierarchical multi-task learning approach for loan fraud detection. Journal of Management Science and Engineering, 7(4), 589-607. https://doi.org/10.1016/j.jmse.2022.06.001

Cherif, A., Badhib, A., Ammar, H., Alshehri, S., Kalkatawi, M., & Imine, A. (2023). Credit card fraud detection in the era of disruptive technologies: A systematic review. Journal of King Saud University - Computer and Information Sciences, 35(1), 145-174. https://doi.org/10.1016/j.jksuci.2022.11.008

Craja, P., Kim, A., & Lessmann, S. (2020). Deep learning for detecting financial statement fraud. Decision Support Systems, 139. https://doi.org/10.1016/j.dss.2020.113421

Dhieb, N., Ghazzai, H., Besbes, H., & Massoud, Y. (2020). A Secure AI-Driven Architecture for Automated Insurance Systems: Fraud Detection and Risk Measurement. IEEE Access, 8, 58546-58558. https://doi.org/10.1109/access.2020.2983300

Dornadulaa, V. N., & Sa, G. (2019). Credit Card Fraud Detection using Machine Learning Algorithms. Procedia Computer Science 165 (2019) 631–641. https://doi.org/10.1016/j.procs.2020.01.057

Dumitrescu, B., Baltoiu, A., & Budulan, S. (2022). Anomaly Detection in Graphs of Bank Transactions for Anti Money Laundering Applications. IEEE Access, 10, 47699-47714. https://doi.org/10.1109/access.2022.3170467

El Naby, A. A., El-Din Hemdan, E., & El-Sayed, A. (2021). Deep Learning Approach for Credit Card Fraud Detection 2021 International Conference on Electronic Engineering (ICEEM),

Esenogho, E., Mienye, I. D., Swart, T. G., Aruleba, K., & Obaido, G. (2022). A Neural Network Ensemble With Feature Engineering for Improved Credit Card Fraud Detection. IEEE Access, 10, 16400-16407. https://doi.org/10.1109/access.2022.3148298

Fan, S., Fu, S., Xu, H., & Cheng, X. (2021). Al-SPSD: Anti-leakage smart Ponzi schemes detection in blockchain. Information Processing & Management, 58(4). https://doi.org/10.1016/j.ipm.2021.102587

Farbmacher, H., Löw, L., & Spindler, M. (2022). An explainable attention network for fraud detection in claims management. Journal of Econometrics, 228(2), 244-258. https://doi.org/10.1016/j.jeconom.2020.05.021

Flegel, U., Vayssière, J., & Bitz, G. (2010). A State of the Art Survey of Fraud Detection Technology. In Insider Threats in Cyber Security (pp. 73-84). https://doi.org/10.1007/978-1-4419-7133-3_4

Forough, J., & Momtazi, S. (2021). Ensemble of deep sequential models for credit card fraud detection. Applied Soft Computing, 99. https://doi.org/10.1016/j.asoc.2020.106883

Fursov, I., Kovtun, E., Rivera-Castro, R., Zaytsev, A., Khasyanov, R., Spindler, M., & Burnaev, E. (2022). Sequence Embeddings Help Detect Insurance Fraud. IEEE Access, 10, 32060-32074. https://doi.org/10.1109/access.2022.3149480

Goecks, L. S., Korzenowski, A. L., Gonçalves Terra Neto, P., de Souza, D. L., & Mareth, T. (2022). Anti‐money laundering and financial fraud detection: A systematic literature review. Intelligent Systems in Accounting, Finance and Management, 29(2), 71-85. https://doi.org/10.1002/isaf.1509

Gomes, C., Jin, Z., & Yang, H. (2021). Insurance fraud detection with unsupervised deep learning. Journal of Risk and Insurance, 88(3), 591-624. https://doi.org/10.1111/jori.12359

Grossi, M., Ibrahim, N., Radescu, V., Loredo, R., Voigt, K., von Altrock, C., & Rudnik, A. (2022). Mixed Quantum–Classical Method for Fraud Detection With Quantum Feature Selection. IEEE Transactions on Quantum Engineering, 3, 1-12. https://doi.org/10.1109/tqe.2022.3213474

Hashemi, S. K., Mirtaheri, S. L., & Greco, S. (2023). Fraud Detection in Banking Data by Machine Learning Techniques. IEEE Access, 11, 3034-3043. https://doi.org/10.1109/access.2022.3232287

Hilal, W., Gadsden, S. A., & Yawney, J. (2022). Financial Fraud: A Review of Anomaly Detection Techniques and Recent Advances. Expert Systems with Applications, 193. https://doi.org/10.1016/j.eswa.2021.116429

Ileberi, E., Sun, Y., & Wang, Z. (2021). Performance Evaluation of Machine Learning Methods for Credit Card Fraud Detection Using SMOTE and AdaBoost. IEEE Access, 9, 165286-165294. https://doi.org/10.1109/access.2021.3134330

Jullum, M., Løland, A., Huseby, R. B., Ånonsen, G., & Lorentzen, J. (2020). Detecting money laundering transactions with machine learning. Journal of Money Laundering Control, 23(1), 173-186. https://doi.org/10.1108/jmlc-07-2019-0055

Kalid, S. N., Ng, K.-H., Tong, G.-K., & Khor, K.-C. (2020). A Multiple Classifiers System for Anomaly Detection in Credit Card Data With Unbalanced and Overlapped Classes. IEEE Access, 8, 28210-28221. https://doi.org/10.1109/access.2020.2972009

Kapadiya, K., Patel, U., Gupta, R., Alshehri, M. D., Tanwar, S., Sharma, G., & Bokoro, P. N. (2022). Blockchain and AI-Empowered Healthcare Insurance Fraud Detection: an Analysis, Architecture, and Future Prospects. IEEE Access, 10, 79606-79627. https://doi.org/10.1109/access.2022.3194569

Karadayi, Y., Aydin, M. N., & Ogrenci, A. S. (2020). Unsupervised Anomaly Detection in Multivariate Spatio-Temporal Data Using Deep Learning: Early Detection of COVID-19 Outbreak in Italy. IEEE Access, 8, 164155-164177. https://doi.org/10.1109/access.2020.3022366

Kolli, C. S., & Tatavarthi, U. D. (2020). Fraud detection in bank transaction with wrapper model and Harris water optimization-based deep recurrent neural network. Kybernetes, 50(6), 1731-1750. https://doi.org/10.1108/k-04-2020-0239

Koreff, J., Weisner, M., & Sutton, S. G. (2021). Data analytics (ab) use in healthcare fraud audits. International Journal of Accounting Information Systems, 42. https://doi.org/10.1016/j.accinf.2021.100523

Lebichot, B., Verhelst, T., Le Borgne, Y.-A., He-Guelton, L., Oble, F., & Bontempi, G. (2021). Transfer Learning Strategies for Credit Card Fraud Detection. IEEE Access, 9, 114754-114766. https://doi.org/10.1109/access.2021.3104472

Lee, J., & Cho, S. (2021, Nov). Abuse detection in healthcare insurance with disease-treatment network embedding. J Biomed Inform, 123, 103936. https://doi.org/10.1016/j.jbi.2021.103936

Li, Z., Huang, M., Liu, G., & Jiang, C. (2021). A hybrid method with dynamic weighted entropy for handling the problem of class imbalance with overlap in credit card fraud detection. Expert Systems with Applications, 175. https://doi.org/10.1016/j.eswa.2021.114750

Lokanan, M. E., & Sharma, K. (2022). Fraud prediction using machine learning: The case of investment advisors in Canada. Machine Learning with Applications, 8. https://doi.org/10.1016/j.mlwa.2022.100269

Lucas, Y., Portier, P.-E., Laporte, L., He-Guelton, L., Caelen, O., Granitzer, M., & Calabretto, S. (2020). Towards automated feature engineering for credit card fraud detection using multi-perspective HMMs. Future Generation Computer Systems, 102, 393-402. https://doi.org/10.1016/j.future.2019.08.029

Mao, X. H. S. X. Z. J. L. (2021). Financial fraud detection using the related-party transaction knowledge graph. Procedia Computer Science 199 (2022) 733–740. https://doi.org/https://doi.org/10.1016/j.procs.2022.01.091

Matloob, I., Khan, S. A., & Rahman, H. U. (2020). Sequence Mining and Prediction-Based Healthcare Fraud Detection Methodology. IEEE Access, 8, 143256-143273. https://doi.org/10.1109/access.2020.3013962

Nguyen, N., Duong, T., Chau, T., Nguyen, V.-H., Trinh, T., Tran, D., & Ho, T. (2022). A Proposed Model for Card Fraud Detection Based on CatBoost and Deep Neural Network. IEEE Access, 10, 96852-96861. https://doi.org/10.1109/access.2022.3205416

Olowookere, T. A., & Adewale, O. S. (2020). A framework for detecting credit card fraud with cost-sensitive meta-learning ensemble approach. Scientific African, 8. https://doi.org/10.1016/j.sciaf.2020.e00464

Omair, B., & Alturki, A. (2020). A Systematic Literature Review of Fraud Detection Metrics in Business Processes. IEEE Access, 8, 26893-26903. https://doi.org/10.1109/access.2020.2971604

Patrick Laurent, T. C., Elsa Herzberg. (2015). Intelligent automation entering the business world.

Pourhabibi, T., Ong, K.-L., Kam, B. H., & Boo, Y. L. (2020). Fraud detection: A systematic literature review of graph-based anomaly detection approaches. Decision Support Systems, 133. https://doi.org/10.1016/j.dss.2020.113303

Pranto, T. H., Hasib, K. T. A. M., Rahman, T., Haque, A. B., Islam, A. K. M. N., & Rahman, R. M. (2022). Blockchain and Machine Learning for Fraud Detection: A Privacy-Preserving and Adaptive Incentive Based Approach. IEEE Access, 10, 87115-87134. https://doi.org/10.1109/access.2022.3198956

Rai, A. K. K. D., Rajendra (2020). Fraud Detection in Credit Card Data using Unsupervised Machine Learning Based Scheme. Proceedings of the International Conference on Electronics and Sustainable Communication Systems (ICESC 2020). https://doi.org/10.1109/ICESC48915.2020.9155615

Rocha-Salazar, J.-d.-J., Segovia-Vargas, M.-J., & Camacho-Miñano, M.-d.-M. (2022). Detection of shell companies in financial institutions using dynamic social network. Expert Systems with Applications, 207. https://doi.org/10.1016/j.eswa.2022.117981

Rodrigues, V. F., Policarpo, L. M., da Silveira, D. E., da Rosa Righi, R., da Costa, C. A., Barbosa, J. L. V., Antunes, R. S., Scorsatto, R., & Arcot, T. (2022, 2022/11/01/). Fraud detection and prevention in e-commerce: A systematic literature review. Electronic Commerce Research and Applications, 56, 101207. https://doi.org/https://doi.org/10.1016/j.elerap.2022.101207

Sahni, S., Mittal, A., Kidwai, F., Tiwari, A., & Khandelwal, K. (2020). InsuranceFraudIdentificationusingComputerVisionandIoT:A Study of Field Fires. International Conference on Smart Sustainable Intelligent Computing and Applications under ICITETM2020. https://doi.org/https://doi.org/10.1016/j.procs.2020.06.008

Sánchez-Aguayo, M., Urquiza-Aguiar, L., & Estrada-Jiménez, J. (2021). Fraud Detection Using the Fraud Triangle Theory and Data Mining Techniques: A Literature Review. Computers, 10(10). https://doi.org/10.3390/computers10100121

Seify, M., Sepehri, M., Hosseinian-far, A., & Darvish, A. (2022, 2022/01/01/). Fraud Detection in Supply Chain with Machine Learning. IFAC-PapersOnLine, 55(10), 406-411. https://doi.org/https://doi.org/10.1016/j.ifacol.2022.09.427

Severino, M. K., & Peng, Y. (2021). Machine learning algorithms for fraud prediction in property insurance: Empirical evidence using real-world microdata. Machine Learning with Applications, 5. https://doi.org/10.1016/j.mlwa.2021.100074

Song, J., Qu, X., Hu, Z., Li, Z., Gao, J., & Zhang, J. (2021). A subgraph-based knowledge reasoning method for collective fraud detection in E-commerce. Neurocomputing, 461, 587-597. https://doi.org/10.1016/j.neucom.2021.03.134

Song, Z. (2020). A Data Mining Based Fraud Detection Hybrid Algorithm in E-bank 2020 International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE),

Taha, A. A., & Malebary, S. J. (2020). An Intelligent Approach to Credit Card Fraud Detection Using an Optimized Light Gradient Boosting Machine. IEEE Access, 8, 25579-25587. https://doi.org/10.1109/access.2020.2971354

Takefuji, Y. (2023). Case report on enormous economic losses caused by fraud from Japan to the world. Journal of Economic Criminology, 1. https://doi.org/10.1016/j.jeconc.2023.100003

Thaifur, A., Maidin, M. A., Sidin, A. I., & Razak, A. (2021). How to detect healthcare fraud? "A systematic review". Gac Sanit, 35 Suppl 2, S441-S449. https://doi.org/10.1016/j.gaceta.2021.07.022

Tingfei, H., Guangquan, C., & Kuihua, H. (2020). Using Variational Auto Encoding in Credit Card Fraud Detection. IEEE Access, 8, 149841-149853. https://doi.org/10.1109/access.2020.3015600

Vanhoeyveld, J., Martens, D., & Peeters, B. (2020). Value-added tax fraud detection with scalable anomaly detection techniques. Applied Soft Computing, 86. https://doi.org/10.1016/j.asoc.2019.105895

Vaughan, G. (2020). Efficient big data model selection with applications to fraud detection. International Journal of Forecasting, 36(3), 1116-1127. https://doi.org/10.1016/j.ijforecast.2018.03.002

Wang, H., Wang, W., Liu, Y., & Alidaee, B. (2022). Integrating Machine Learning Algorithms With Quantum Annealing Solvers for Online Fraud Detection. IEEE Access, 10, 75908-75917. https://doi.org/10.1109/access.2022.3190897

Westland, J. C. (2022). A comparative study of frequentist vs Bayesian A/B testing in the detection of E-commerce fraud. Journal of Electronic Business & Digital Economics, 1(1/2), 3-23. https://doi.org/10.1108/jebde-07-2022-0020

Wu, Y., Xu, Y., & Li, J. (2021). Fraudulent traffic detection in online advertising with bipartite graph propagation algorithm. Expert Systems with Applications, 185. https://doi.org/10.1016/j.eswa.2021.115573

Xia, H., Ma, H., & Cheng, P. (2021). PE‐EDD: An efficient peer‐effect‐based financial fraud detection approach in publicly traded China firms. CAAI Transactions on Intelligence Technology, 7(3), 469-480. https://doi.org/10.1049/cit2.12057

Xiuguo, W., & Shengyong, D. (2022). An Analysis on Financial Statement Fraud Detection for Chinese Listed Companies Using Deep Learning. IEEE Access, 10, 22516-22532. https://doi.org/10.1109/access.2022.3153478

Yan, C., Li, Y., Liu, W., Li, M., Chen, J., & Wang, L. (2020). An artificial bee colony-based kernel ridge regression for automobile insurance fraud identification. Neurocomputing, 393, 115-125. https://doi.org/10.1016/j.neucom.2017.12.072

Zhang, X., Han, Y., Xu, W., & Wang, Q. (2021). HOBA: A novel feature engineering methodology for credit card fraud detection with a deep learning architecture. Information Sciences, 557, 302-316. https://doi.org/10.1016/j.ins.2019.05.023

Zhou, H., Sun, G., Fu, S., Wang, L., Hu, J., & Gao, Y. (2021). Internet Financial Fraud Detection Based on a Distributed Big Data Approach With Node2vec. IEEE Access, 9, 43378-43386. https://doi.org/10.1109/access.2021.3062467

Zhou, S., He, J., Yang, H., Chen, D., & Zhang, R. (2020). Big Data-Driven Abnormal Behavior Detection in Healthcare Based on Association Rules. IEEE Access, 8, 129002-129011. https://doi.org/10.1109/access.2020.3009006

Zhu, H., Liu, G., Zhou, M., Xie, Y., Abusorrah, A., & Kang, Q. (2020). Optimizing Weighted Extreme Learning Machines for imbalanced classification and application to credit card fraud detection. Neurocomputing, 407, 50-62. https://doi.org/10.1016/j.neucom.2020.04.078

Zhu, X., Ao, X., Qin, Z., Chang, Y., Liu, Y., He, Q., & Li, J. (2021, Nov 28). Intelligent financial fraud detection practices in post-pandemic era. Innovation (Camb), 2(4), 100176. https://doi.org/10.1016/j.xinn.2021.100176

Downloads

Published

2023-10-12