Bibliometric Analysis Of Anticipating Digital Financial Report Fraud Using Vosviewer

Authors

  • Isnaini Hidayatun Muharromah Faculty of Economics and Business, University of Brawijaya, Malang, Indonesia
  • Gugus Irianto Faculty of Economics and Business, University of Brawijaya, Malang, Indonesia
  • Ali Djamhuri Faculty of Economics and Business, University of Brawijaya, Malang, Indonesia

DOI:

https://doi.org/10.22219/jrak.v15i1.37745

Keywords:

Bibliometric Analysis, Digital Fraud Anticipations, Financial Statement, VOSviewer

Abstract

Purpose: The purpose of this study was to determine the development of research on anticipating digital financial reporting fraud using bibliometric analysis on the VOSviewer application version 1.6.20.

Methodology/approach: The research method used is a qualitative method with a thematic analysis approach.

Findings: The results of the study showed that the development of research on anticipating digital financial reporting fraud from 2019-2024 experienced significant annual fluctuations. In the last year, there has been a marked increase in the number of publications. The most publications in 2024 and the smallest in 2020, consisting of 11 clusters with 173 keyword items with the most publications in Heliyon and Procedia Computer Science. Technologies such as blockchain, big data analytics, and artificial intelligence are identified as important tools in detecting and preventing fraud.

Practical implications: The results of this study can be used as a guide for companies and academics in developing digital strategies to improve financial monitoring and transparency systems.

Originality/value: To the best of the researcher's knowledge, this study is the first study to examine the development of digital financial reporting fraud anticipation research with bibliometric analysis of Scopus indexed publications in 2019–2024

Downloads

Download data is not yet available.

References

Calderon-Monge, E., & Ribeiro-Soriano, D. (2023). The role of digitalization in business and management: a systematic literature review. In Review of Managerial Science (Issue 0123456789). Springer Berlin Heidelberg. https://doi.org/10.1007/s11846-023-00647-8

Dorris, B. J. D. (2020). Report to the Nations on Occupational Fraud and Abuse: 2020 Global Fraud Study. Association of Certified Fraud Examiners, Inc., 1–88. https://www.acfe.com/report-to-the-nations/2020/

Gupta, R. (2023). Leveraging Machine Learning Algorithms for Fraud Detection and Prevention in Digital Payments: A Cross Country Comparison. In Lecture Notes in Electrical Engineering (Vol. 1080, pp. 369–381). https://doi.org/10.1007/978-981-99-5994-5_33

Hakim, L., Aji, R. F., Informasi, M. T., Komputer, F. I., & Indonesia, U. (2024). Penerapan Blockchain untuk Tracking Dana Pemerintah : Studi Kasus pada Penyaluran Dana Transfer Daerah Application of Blockchain for Tracking Government Funds : Case Studies on. 13, 195–201.

Hidayatul Fadlilah, A., Wiji Pamungkas, E., Ary Setyawan, A., Ety Widjayanti, C., Mustika Widyastuti, S., Ibnu Sina, U., & Tinggi Ilmu Ekonomi Wibawa Karta Raharja, S. (2024). Impact of Internal Control System Implementation on Accounting Fraud Prevention Dampak Penerapan Sistem Pengendalian Internal Untuk Pencegahan Kecurangan Akuntansi. 7.

Khalatur, S., Pavlova, H., Vasilieva, L., & ... (2022). Innovation management as basis of digitalization trends and security of financial sector. In Entrepreneurship and …. jssidoi.org. http://jssidoi.org/jesi/article/download/960/Khalatur_Innovation_management_as_basis_of_digitalization_trends_and_security_of_financial_sector.pdf

Luna, M., Fernandez-Vazquez, S., Tereñes Castelao, E., & Arias Fernández, Á. (2024). A blockchain-based approach to the challenges of EU’s environmental policy compliance in aquaculture: From traceability to fraud prevention. Marine Policy, 159(October 2023), 0–3. https://doi.org/10.1016/j.marpol.2023.105892

Madhuri, T. S. (2021). Big-data driven approaches in materials science for real-time detection and prevention of fraud. In Materials Today: Proceedings (Vol. 81, Issue 2, pp. 969–976). https://doi.org/10.1016/j.matpr.2021.04.323

Mahya, L., Tarjo, T., Sanusi, Z. M., & Kurniawan, F. A. (2023). Intelligent Automation Of Fraud Detection And Investigation:A Bibliometric Analysis Approach. Jurnal Reviu Akuntansi Dan Keuangan, 13(3), 588–613. https://doi.org/10.22219/jrak.v13i3.28487

Nazara, D. S., Fitriana, F., & Santoso, R. A. (2024). Analisis Bibliometrik Dengan Vosviewer Terhadap Perkembangan Penelitian Forensic Audit. Jurnal Sains Dan Teknologi, 5(3), 714–719. https://doi.org/10.55338/saintek.v5i3.2339

Rahman, R. A., & Anwar, I. S. K. (2014). Effectiveness of Fraud Prevention and Detection Techniques in Malaysian Islamic Banks. Procedia - Social and Behavioral Sciences, 145, 97–102. https://doi.org/10.1016/j.sbspro.2014.06.015

Sarjana, S. (2022). Analisis Bibliometrik Terhadap. 3(2), 119–124.

Sudarwanto, A. S., & Kharisma, D. B. B. (2022). Comparative study of personal data protection regulations in Indonesia, Hong Kong and Malaysia. Journal of Financial Crime. https://doi.org/10.1108/JFC-09-2021-0193

Published

2025-01-09