The Relationship between Screen Time and Screen Size with Computer Vision Syndrome

Authors

  • Sisca Erlita Universitas Pembangunan Nasional Veteran Jakarta
  • Nurfitri Bustamam Universitas Pembangunan Nasional Veteran Jakarta
  • Sri Wahyuningsih Universitas Pembangunan Nasional Veteran Jakarta

DOI:

https://doi.org/10.22219/sm.Vol19.SMUMM1.22564

Abstract

During the COVID-19 pandemic, student activities are carried out online using various gadget sizes. This situation increases the risk of computer vision syndrome (CVS). This study aims to determine the relationship between screen time and screen size with CVS among Universitas Pembangunan Nasional Veteran Jakarta medical students. The study used a cross-sectional design, questionnaire, and application to measure screen time. The study showed that 59.5% of the 84 subjects experienced CVS symptoms. The screen time of subjects on smartphones was 7.22 ± 3.01 hours/day, and on laptops 6.03 ± 3.49 hours/day. The subject uses a laptop 14 (11 - 16) inches and a smartphone 6.4 (4.7 - 6.7) inches. The Pearson correlation test showed a correlation between screen time and CVS scores (p = 0.032; r = 0.234). The Chi-square test showed there were differences in symptoms of excessive blinking between the group with laptops ≤ 14 inches and > 14 inches (p = 0.019), as well as differences in symptoms of eyes redness (p = 0.042) and blurred vision (p = 0.031) between the group with smartphones < 5.8 inches and ≥ 5.8 inches. There is a relationship between screen time and screen size with CVS.

Downloads

Download data is not yet available.

Author Biography

Nurfitri Bustamam, Universitas Pembangunan Nasional Veteran Jakarta

Departemen Ilmu Faal

References

Ahmed, M. M., Saad, N. E., Almehelmy, E. M., Yousef, F. F. (2019). Computer vision syndrome and associated factors among students of Faculty of Medicine, Cairo University. The Medical Journal of Cairo University, 87(12), 4877–4881. https://doi.org/10.21608/mjcu.2019.85230

Akinbinu, T. R., Mashalla, Y. J. (2014). Medical practice and review impact of computer technology on health: computer vision syndrome (CVS). Academic Journals, 5(November), 20–30. https://doi.org/10.5897/MPR.2014.0121

Alemayehu, A. M., Alemayehu, M. M. (2019). Pathophysiologic mechanisms of computer vision syndrome and its prevention: review. World Journal of Ophthalmology & Vision Research, 2(5), 1–7. https://doi.org/10.33552/wjovr.2019.02.000547

Bhattacharjee, S., Nanda, I. A. (2021). Computer vision syndrome in medical students during a period of exclusive online lecture classes in Durgapur, West Bengal - a cross-sectional study. Journal of Evidence Based Medicine and Healthcare, 8(20), 1575–1579. https://doi.org/10.18410/jebmh/2021/298

Ganne, P., Najeeb, S., Chaitanya, G., Sharma, A., Krishnappa, N. C. (2021). Digital eye strain epidemic amid covid-19 pandemic–a cross-sectional survey. Ophthalmic Epidemiology, 28(4), 285–292. https://doi.org/10.1080/09286586.2020.1862243

Handarini, O. I., Wulandari, S. S. (2020). Pembelajaran daring sebagai upaya study from home (SFH). Jurnal Pendidikan Administrasi Perkantoran (JPAP), 8(3), 465–503.

Harahap, W. R. (2020). Hubungan perilaku dan durasi penggunaan komputer dengan keluhan computer vision syndrome pada mahasiswa Fakultas Kedokteran Universitas Sumatera Utara [Skripsi Universitas Sumatera Utara]. https://repositori.usu.ac.id/handle/123456789/30879

Iqbal, M., El-Massry, A., Elagouz, M., Elzembely, H. (2018). Computer vision syndrome survey among the medical students in Sohag University Hospital, Egypt. Ophthalmology Research: An International Journal, 8(1), 1–8. https://doi.org/10.9734/or/2018/38436

Iqbal, M., Said, O., Ibrahim, O., Soliman, A. (2021). Visual sequelae of computer vision syndrome: A cross-sectional case-control study. Journal of Ophthalmology, 2021. https://doi.org/10.1155/2021/6630286

Jahja, F., Hananta, L., Prastowo, N. A., Sidharta, V. M. (2021). Sedentary living, screen time, and physical activities in medical students during the coronavirus (covid-19) pandemic. Sport Mont, 19(3), 3–7. https://doi.org/10.26773/smj.211005

Jahrami, H., Rashed, M., Alrasheed, M. M., Bragazzi, N. L., Saif, Z., Alhaj, O., Bahammam, A. S., & Vitiello, M. V. (2021). Nomophobia is associated with insomnia but not with age, sex, BMI, or mobile phone screen size in young adults. Nature and Science of Sleep, 13(August), 1931–1941. https://doi.org/10.2147/NSS.S335462

Khare, R., Mahour, J., Ohary, R., Kumar, S. (2021). Impact of online classes, screen time, naps on sleep, and assessment of sleep-related problems in medical college students during lockdown due to coronavirus disease-19 pandemic. National Journal of Physiology, Pharmacy and Pharmacology, 11(1), 1. https://doi.org/10.5455/njppp.2021.10.09235202006092020

Kharel Sitaula, R., Khatri, A. (2018). Knowledge, attitude, and practice of computer vision syndrome among medical students and its impact on ocular morbidity. Journal of Nepal Health Research Council, 16(3), 291–296. https://doi.org/10.3126/jnhrc.v16i3.21426

Klamm, J., Tarnow, K. G. (2015). Computer vision syndrome: a review of literature. Medsurg Nursing, 24(2), 89.

Labhishetty, V. (2021). neurolens®: a comprehensive way to treat digital (computer) vision syndrome. 1–4.

Logaraj, M., Madhupriya, V., Hegde, S. (2014). Computer vision syndrome and associated factors among medical and engineering students in Chennai. Annals of Medical and Health Sciences Research, 4(2), 179. https://doi.org/10.4103/2141-9248.129028

Nafrin, I. A., Hudaidah, H. (2021). Perkembangan pendidikan Indonesia di masa pandemi COVID-19. Edukatif: Jurnal Ilmu Pendidikan, 3(2), 456–462. https://doi.org/10.31004/edukatif.v3i2.324

Noreen, K., Batool, Z., Fatima, T., Zamir, T. (2016). Prevalence of computer vision syndrome and its associated risk factors among under graduate medical students. Pak J Ophthalmol, 140(3), 140–146.

Olatunde, O., Yusuff, A., Adebayo, A.-A., Izilein, F., Adeleke, I. (2013). An investigation of the incidences of repetitive strain injury among computer users in Nigeria.

Permana, M. A., Koesyanto, H., Mardiana. (2015). Faktor yang berhubungan dengan keluhan computer vision syndrome (cvs) pada pekerja rental komputer di Wilayah Unnes. Unnes Journal of Public Health, 4(3), 48–57. https://doi.org/10.15294/ujph.v4i3.6372

Qin, F., Song, Y., Nassis, G. P., Zhao, L., Dong, Y., Zhao, C., Feng, Y., Zhao, J. (2020). Physical activity, screen time, and emotional well-being during the 2019 novel coronavirus outbreak in China. International Journal of Environmental Research and Public Health, 17(14), 1–16. https://doi.org/10.3390/ijerph17145170

Seguí, M. D. M., Cabrero-García, J., Crespo, A., Verdú, J., & Ronda, E. (2015). A reliable and valid questionnaire was developed to measure computer vision syndrome at the workplace. Journal of Clinical Epidemiology, 68(6), 662–673. https://doi.org/10.1016/j.jclinepi.2015.01.015

Vikanaswari, G. I., & Handayani, A. T. (2018). The screening of computer vision syndrome in medical students of Udayana University. Bali Journal of Ophthalmology, 2(2), 28–34. https://doi.org/10.15562/bjo.v2i2.20

Wu, H. C., Chiu, M. C., & Peng, C. W. (2016). Visual fatigue occurrence time when using hand-held intelligent devices. Journal of Ambient Intelligence and Humanized Computing, 7(6), 829–835. https://doi.org/10.1007/s12652-016-0356-5

Xiang, M., Zhang, Z., Kuwahara, K. (2020). Impact of COVID-19 pandemic on children and adolescents’ lifestyle behavior larger than expected. Progress in Cardiovascular Diseases, 63(4), 531–532. https://doi.org/10.1016/j.pcad.2020.04.013

Yuswati, Isman, M. F. (2016). Hubungan antara perilaku penggunaan laptop dengan keluhan kesehatan akibat penggunaan laptop. Jurnal Kesehatan Sekolah Tinggi Ilmu Kesehatan Cirebon, 7(1), 789–797.

Zhao, H., Wu, S. N., Zhang, Q., Zhao, C., Shu, H. Y., Ge, Q. M., & Shao, Y. (2021). Video display terminal use and other risk factors for abnormal blinking in children: gender differences. BMC Ophthalmology, 21(1), 1–10. https://doi.org/10.1186/s12886-021-02194-w

Downloads

Published

2023-06-30

Issue

Section

Article