Optimization of the Effect of Electropolishing's Current Density and Time on Roughness, Microstructure and Corrosion Resistance

Authors

  • Sutarno Jenderal Achmad Yani University
  • Bambang Widyanto Jenderal Achmad Yani University
  • E.P. Syuryana Institut Teknologi Bandung
  • Soleh Wahyudi Institut Teknologi Sains Bandung
  • Fikri Septian Nurul Bayan Jenderal Achmad Yani University
  • Camalia Bani Rachma Jenderal Achmad Yani University
  • Gusti Verhan Pratama Jenderal Achmad Yani University
  • Riskamti Jenderal Achmad Yani University
  • Ariq Akmal Muwaffaq Jenderal Achmad Yani University

DOI:

https://doi.org/10.22219/jemmme.v6i3.19828

Abstract

The surface roughness of medical, pharmaceutical, food, and beverage equipment in direct contact with materials and products plays an important role in product quality, hygiene, equipment corrosion, and ease of cleaning. The high surface roughness is feared as a place for the accumulation of process residues, products, and nesting of microbes such as pathogenic bacteria that degrade product quality. The purpose of this research is to investigate the parameters of the electropolishing process, namely the electric current density and the time of the electropolishing process. The electrolyte solution is a mixture of 35% sulfuric acid and 51% phosphoric acid with the electropolishing process temperature being maintained at 50°C, using stainless steel as cathode, and the material being processed is AISI 316L. Characterization of electropolishing results includes roughness, microstructure, and corrosion resistance.

Downloads

Download data is not yet available.

References

Ridwan M. 94 Persen Masih Impor, 5 Asosiasi Alkes Curhat ke Panja Komisi IX DPR. SINDONEWS.com. 2020 Nov 19.

Suryana W. Produsen Alat Kesehatan Lokal Masih Minim Dukungan. REPUBLIKA.com. 2020 Jul 6.

Rokom. Produksi Alat Kesehatan Dalam Negeri Meningkat. Sehat Negeriku. 2018 Nov 8.

DOCKWEILER Tube Systems in Stainless Steel: Products at a Glance [Internet]. Available from: https://souzimport.ru/upload/files/DW_Product_Overview_EN.pdf

Harrison Electropolishing. ASME BPE Guidelines for Pharmaceutical Equipment. harrisonep.com.

Harrison Electropolishing. Pharmaceutical Equipment Cleaning. harrisonep.com.

Łyczkowska-Widłak E, Lochyński P, Nawrat G. Electrochemical Polishing of Austenitic Stainless Steels. Materials. 2020 Jun 4;13(11):2557.

Gadalińska E, Wronicz W. Electropolishing Procedure Dedicated to In-Depth Stress Measurements with X-Ray Diffractometry. Fatigue of Aircraft Structures. 2016 Jun 1;2016(8):65–72.

Mingear J, Zhang B, Hartl D, Elwany A. Effect of process parameters and electropolishing on the surface roughness of interior channels in additively manufactured nickel-titanium shape memory alloy actuators. Addit Manuf. 2019 May;27:565–75.

ABLE Electropolishing. Electropolishing solves these 7 common metal surface problems. ABLE Electropolishing: Advanced Metal Improvement Technologies. 2021.

Chatterjee B. Science and Industry of Electropolishing. Galvanothechnik. 2015;71(1):71–93.

Schwartz W. Electropolishing. 2003.

Zatkalíková V, Liptáková T. Pitting corrosion of stainless steel at the various surface treatment. Materials Engineering. 2011;18(4).

Zaki S, Zhang N, Gilchrist MD. Electropolishing and Shaping of Micro-Scale Metallic Features. Micromachines (Basel). 2022 Mar 18;13(3):468.

Kityk AA, Protsenko VS, Danilov FI, Kun OV, Korniy SA. Electropolishing of aluminium in a deep eutectic solvent. Surf Coat Technol. 2019 Oct;375:143–9.

Zatkalíková V, Markovičová L. Corrosion resistance of electropolished AISI 304 stainless steel in dependence of temperature. In: Material Science and Engineering. Pavlov: IOP Publishing; 2019.

Lochyński P, Charazińska S, Łyczkowska-Widłak E, Sikora A. Electropolishing of Stainless Steel in Laboratory and Industrial Scale. Metals (Basel). 2019 Aug 5;9(8):854.

Lochyński P, Charazińska S, Łyczkowska-Widłak E, Sikora A. Electropolishing of Stainless Steel in Laboratory and Industrial Scale. Metals (Basel). 2019 Aug 5;9(8):854.

Núñez PJ, García-Plaza E, Hernando M, Trujillo R. Characterization of Surface Finish of Electropolished Stainless Steel AISI 316L with Varying Electrolyte Concentrations. Procedia Eng. 2013;63:771–8.

Nakar D, Harel D, Hirsch B. Electropolishing effect on roughness metrics of ground stainless steel: a length scale study. Surf Topogr. 2018;6(1).

Rokosz K. High-current-density electropolishing (HDEP) of AISI 316L (EN 1.4404) stainless steel. Tehnicki vjesnik - Technical Gazette. 2015;22(2):415–24.

Taha AA, Abouzeid FM, Elsadek MM, Othman YM. The Electropolishing of C-Steel in Orthophosphoric Acid Containing Methanolic Plant Extract. J Chem. 2020 Dec 17;2020:1–18.

Núñez PJ, García-Plaza E, Hernando M, Trujillo R. Characterization of Surface Finish of Electropolished Stainless Steel AISI 316L with Varying Electrolyte Concentrations. Procedia Eng. 2013;63:771–8.

Han W, Fang F. Eco-friendly NaCl-based electrolyte for electropolishing 316L stainless steel. J Manuf Process. 2020 Oct;58:1257–69.

Certificate of Reception 3.1 according to NF EN 10204. Certificate. lri SODIME; 2021.

Łyczkowska-Widłak E, Lochyński P, Nawrat G. Electrochemical Polishing of Austenitic Stainless Steels. Materials. 2020 Jun 4;13(11):2557.

Downloads

Published

2022-09-15

How to Cite

Sutarno, Widyanto, B., Syuryana, E., Wahyudi, S., Bayan, F. S. N., Rachma, C. B., Pratama, G. V., Riskamti, & Muwaffaq, A. A. (2022). Optimization of the Effect of Electropolishing’s Current Density and Time on Roughness, Microstructure and Corrosion Resistance. Journal of Energy, Mechanical, Material, and Manufacturing Engineering, 6(3), 197–208. https://doi.org/10.22219/jemmme.v6i3.19828

Issue

Section

Articles