Effect of airflow rate and honeycomb channels addition on the efficiency of bagasse-fuelled top-lit updraft (TLUD) gasification stove

Authors

  • Clarissa Putri Sholeha Jember University
  • Muhammad Trifiananto Jember University
  • Mahros Darsin Jember University
  • Andi Sanata Jember University
  • Imam Sholahuddin Jember University
  • Ariyo Anindito Jember University

DOI:

https://doi.org/10.22219/jemmme.v9i1.31776

Keywords:

airflow rate, bagasse, biomass, honeycomb, TLUD

Abstract

The use of Liquefied Petroleum Gas (LPG) fuels has increased over time and has triggered the innovation of renewable fuels that do not affect the environment. This renewable fuel is biomass. Biomass is derived from organic materials of plants or animals that can be used as fuel. The conversion of biomass into thermal energy using gasification stoves can increase thermal efficiency up to twice that of conventional biomass combustion. Common stoves that use nowadays is Top-Lit Updraft (TLUD) gasifier that easy to optimize. This type of gasifier has a simple design and can be fuelled with any type of biomass with a water composition of less than 20%. Gasification stoves have so far been developed using various biomass fuels, one of which is bagasse waste. Bagasse is also easy to obtain in Indonesia because it has an abundant number of quantities. In addition to the fuel aspect, the ability of the gasification stove to produce good thermal efficiency depends on the stove design, such as stove type, stove dimensions, and combustion airflow rate. It is tested with the water boiling test method using variations of airflow rate of 2 m/s, 3.5 m/s, 5 m/s, and 6.5 m/s and honeycomb channels addition. As a result, it reached 30% thermal efficiency.

Downloads

Download data is not yet available.

References

Caperada, S.C. Biomass Energy Conversion. Texas A&M University, USA. 2011.

Anggara, R. Pengaruh Jumlah Lubang Udara pada Tungku Pembakaran serta Variasi Kecepatan Aliran Udara terhadap Kinerja Kompor Gasifikasi dengan Bahan Bakar Pelet Kayu Jati. Laporan Tugas Akhir Jurusan Teknik Fisika Fakultas Teknik Elektro, Universitas Telkom, Bandung. e-Proceeding of Engineering. 2019; 6(2): 5225-5233

Panwar, N.L. Design and Perfomance Evaluation of Energy Efficient Biomass Gasifier Based Cook Stove on Multi Fuels. Mitig Adapt Strategy Glob Change. 2009; 14: 627-633. doi: https://doi.org/10.1007/s11027-009-9187-4

Suzaqi, A., Suwandi, dan Nurwulan. Pengaruh Laju Udara dan Variasi Lubang terhadap Karakteristik Nyala Warna Api pada Kompor Gasifikasi Biomassa. E-Proceeding of Engineering. 2020; 7(3): 9286–9293.

Wahyuni. Sintesis dan Karakterisasi Zeolit ZSM-5 dari Bahan Dasar Alami dengan Metode Hidrotermal Menggunakan Air Laut. Thesis. Padang: Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Andalas. 2014.

Akudo, C.O. Quantification of Tars and Particulates from A Pilot Scale, Downdraft Biomass Gasifier. Faculty of The Louisiana State University and Agricultural and Mechanical Collage. 2008.

Belonio, A.T. Rice Husk Gas Stove Handbook, Appropriate Technology Center. Central Philipine University, Filipina. 2005.

Widjanarko, P.I., Widiantoro., L. Felycia, Soetaredjo., dan S. Ismadji. Kinetika Adsorpsi Zat Warna Congo Red dan Rhodamine B dengan Menggunakan Serabut Kelapa dan Ampas Tebu. Jurusan Teknik Kimia Unika Widya Mandala Surabaya. The 4th National Conference: Design and Application of Technology. 2005

Apriani. Uji Kualitas Biobriket Ampas Tebu dan Sekam Padi sebagai Bahan Bakar Alternatif. Thesis. Makassar:Universitas Islam Negeri (UIN) Alauddin. 2015.

Aljarwi, M. A., D. Pangga, dan S. Ahzan. Uji Laju Pembakaran dan Nilai Kalor Briket Wafer Sekam Padi dengan Variasi Tekanan. Jurnal Hasil Kajian, Inovasi, dan Aplikasi Pendidikan Fisika 2020; 6(2): 200-205.

Amin, M.C., A.J. Taufiq, dan I.H. Kurniawan. Pemanfaatan Ampas Tebu sebagai Pembangkit Listrik Biomassa di PG. Sragi Pekalongan. Jurnal Riset dan Rekayasa. Purwokerto. 2019. doi: 10.30595/jrre.v1i1.4922

Mukunda, H.S., S. Dassapa, P.J. Paul, N.K.S. Rajan, M. Yagnaraman, D.R. Kumar, M. Deogaonkar. Gasifier Stove-Science, Technology And Field Outreach.Current Science. 2010; 98, (5): 627-638.

Septiani, A.Y. Analisis Kinerja Kompor Gasifikasi Top Lit Up Draft (TLUD) dengan Variasi Bahan Bakar. Thesis Jember: Universitas Jember. 2022.

Prayogi, D. P. Kinerja Kompor Gasifikasi Tipe TLUD dengan Variasi Ruang Pembakaran Menggunakan Bahan Bakar Limbah Ampas Tebu. Thesis. Jember: Universitas Jember. 2023

Kusnawan. Pengaruh Honeycomb sebagai Penyearah Aliran Fluida pada Open Circuit Wind Tunnel. Thesis. Universitas Gunadarma. 2016.

Handoyo. Pengaruh Kecepatan Udara pada Tungku Gasifikasi Sekam Padi terhadap Temperatur Pembakaran. Thesis. Surakarta: Fakultas Teknik, Universitas Muhammadiyah Surakarta. 2013.

Wijianto, Subroto, dan Sarjito. Variasi Kecepatan Aliran Udara pada Tungku Gasifikasi Limbah Biomassa terhadap Nyala Efektif dan Temperatur Pembakaran. 2016; ISSN 2407-9189: 43-48.

Setiawan, B. W. The Influences of Combustion of Household Organic. Elektro, F. T., Telkom, U., & Calorimeter, B. 2019; 6(2); 5242–5249.

Hartono, F., R. Bessie, A. Aribowo. Pengukuran Turbulensi dan Angularitas Aliran pada Terowongan Angin Subsonik Lapan. Jurnal Teknologi Dirgantara. . 2018; 14(2). DOI: 10.30536/j.jtd.2016.v14.a2481.

doi: http://dx.doi.org/10.30536/j.jtd.2016.v14.a2481

Prasetiani, C.F., Suwandi., dan R.F. Iskandar. Pengaruh Jenis Biomassa dan Kecepatan Aliran Udara terhadap Kinerja Kompor Gasifikasi Biomassa. e-Proceeding of Engineering. 2019; 6(2): 5217-5224

Downloads

Published

2024-07-24

How to Cite

Sholeha, C. P., Trifiananto, M., Darsin, M., Sanata, A., Sholahuddin, I., & Anindito, A. (2024). Effect of airflow rate and honeycomb channels addition on the efficiency of bagasse-fuelled top-lit updraft (TLUD) gasification stove. Journal of Energy, Mechanical, Material, and Manufacturing Engineering, 9(1), 11–18. https://doi.org/10.22219/jemmme.v9i1.31776

Issue

Section

Articles