Optimization of staggered array configurations to enhance the aerodynamic performance of Darrieus wind turbines

Authors

  • Yosua Heru Irawan Institut Teknologi Nasional Yogyakarta (ITNY)
  • Aditya Sukma Nugraha
  • Po Ting Lin

DOI:

https://doi.org/10.22219/jemmme.v9i1.33352

Keywords:

conjugate gradient, Darrieus wind turbine, optimization

Abstract

This research focuses on optimizing the arrangement of Darrieus wind turbines through an adjustable R array, which represents the spacing between the turbine rotors. The ANSYS Fluent solver, employing the k-epsilon turbulent model and sliding mesh technique, is utilized to predict turbine performance. Additionally, a grid independence test is conducted to validate the solver's effectiveness. The optimization of the R array is achieved using the conjugate gradient method. Simulation results indicate that a blade grid size of 1 mm results in an error under 1%. A smaller R array yields a lower average coefficient of power (Cpaverage) due to the wake interactions between the rotors. The optimal spacing for each turbine to achieve a Cpaverage value of 0.4088 is determined to be 1.772 meters.

Downloads

Download data is not yet available.

References

Liu, J., Lin, H., & Zhang, J. (2019). Review on the technical perspectives and commercial viability of vertical axis wind turbines. Ocean Engineering, 182, 608-626. doi: https://doi.org/10.1016/j.oceaneng.2019.04.086

Ghigo, A., Faraggiana, E., Giorgi, G., Mattiazzo, G., & Bracco, G. (2024). Floating Vertical Axis Wind Turbines for offshore applications among potentialities and challenges: A review. Renewable and Sustainable Energy Reviews, 193, 114302. doi: https://doi.org/10.1016/j.rser.2024.114302

Shen, Z., Gong, S., Zu, H., & Guo, W. (2024). Multi-objective optimization study on the performance of double Darrieus hybrid vertical axis wind turbine based on DOE-RSM and MOPSO-MODM. Energy, 299, 131406. doi: https://doi.org/10.1016/j.energy.2024.131406

Ghigo, A., Petracca, E., Mangia, G., Giorgi, G., & Bracco, G. (2024, April). Development of a floating Vertical Axis Wind Turbine for the Mediterranean Sea. In Journal of Physics: Conference Series (Vol. 2745, No. 1, p. 012008). IOP Publishing. doi: https://doi.org/10.1088/1742-6596/2745/1/012008

Vergaerde, A., De Troyer, T., Muggiasca, S., Bayati, I., Belloli, M., Kluczewska-Bordier, J., ... & Runacres, M. C. (2020). Experimental characterisation of the wake behind paired vertical-axis wind turbines. Journal of Wind Engineering and Industrial Aerodynamics, 206, 104353. doi: https://doi.org/10.1016/j.jweia.2020.104353

Ahmad, M., Shahzad, A., & Qadri, M. N. M. (2023). An overview of aerodynamic performance analysis of vertical axis wind turbines. Energy & Environment, 34(7), 2815-2857. doi: https://doi.org/10.1177/0958305X221121281

Le Fouest, S., & Mulleners, K. (2024). Optimal blade pitch control for enhanced vertical-axis wind turbine performance. Nature Communications, 15(1), 2770. doi: https://doi.org/10.1038/s41467-024-46988-0

Santos, G. B., Pantaleão, A. V., & Salviano, L. O. (2023). Using deep generative adversarial network to explore novel airfoil designs for vertical-axis wind turbines. Energy Conversion and Management, 282, 116849. doi: https://doi.org/10.1016/j.enconman.2023.116849

Kuang, L., Zhang, R., Su, J., Shao, Y., Zhang, K., Chen, Y., ... & Cao, Y. (2023). Systematic investigation of effect of rotor solidity on vertical-axis wind turbines: Power performance and aerodynamics analysis. Journal of Wind Engineering and Industrial Aerodynamics, 233, 105284. doi: https://doi.org/10.1016/j.jweia.2022.105284

Miliket, T. A., Ageze, M. B., & Tigabu, M. T. (2022). Aerodynamic performance enhancement and computational methods for H-Darrieus vertical axis wind turbines. International Journal of Green Energy, 19(13), 1428-1465. doi: https://doi.org/10.1080/15435075.2021.2005605

Duty, D., Johan, M. K., Samy, Y., Indarah, M. E. R., Shaharudin, S. S., Didane, D. H., & Manshoor, B. (2023). Performance Analysis of VAWT with H-Darrieus Rotor using 2D CFD Modelling. Journal of Design for Sustainable and Environment, 5(1), 5-10.

Wilberforce, T., & Alaswad, A. (2023). Performance analysis of a vertical axis wind turbine using computational fluid dynamics. Energy, 263, 125892. doi: https://doi.org/10.1016/j.energy.2022.125892

Su, H., Meng, H., Qu, T., & Lei, L. (2021). Wind tunnel experiment on the influence of array configuration on the power performance of vertical axis wind turbines. Energy Conversion and Management, 241, 114299. doi: https://doi.org/10.1016/j.enconman.2021.114299

Verma, M., & De, A. (2023). Performance analysis of vertical-axis wind turbine clusters: Effect of inter-turbine spacing and turbine rotation. Physics of Fluids, 35(10). doi: https://doi.org/10.1063/5.0169060

Azadani, L. N. (2023). Vertical axis wind turbines in cluster configurations. Ocean Engineering, 272, 113855. doi: https://doi.org/10.1016/j.oceaneng.2023.113855

Raciti Castelli, M., Englaro, A., & Benini, E. (2011). The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD. Energy, 36(8), 4919–4934. doi: https://doi.org/10.1016/j.energy.2011.05.036

Downloads

Published

2024-08-01

How to Cite

Irawan, Y. H., Nugraha, A. S., & Lin, P. T. (2024). Optimization of staggered array configurations to enhance the aerodynamic performance of Darrieus wind turbines. Journal of Energy, Mechanical, Material, and Manufacturing Engineering, 9(1), 19–26. https://doi.org/10.22219/jemmme.v9i1.33352

Issue

Section

Articles