Tensile Strength Prediction of Empty Palm Oil Bunch Fiber Composite with Artificial Neural Network

Authors

  • Hery Tri Waloyo Universitas Muhammadiyah Kalimantan Timue
  • Agus Mujianto Universitas Muhammadiyah Kalimantan Timur
  • Richie Feriyanto Politeknik Negeri Samarinda

DOI:

https://doi.org/10.22219/jemmme.v9i2.35619

Keywords:

Artificial Neural Network (ANN), Backpropagation, Palm Oil Empty Bunches (POEB), Radial Basis Function (RBF)

Abstract

As the leading global producer of palm oil, Indonesia encounters substantial environmental challenges arising from the waste generated by empty palm oil fruit bunches (EPOFB). This research aims to develop an accurate Artificial Neural Network (ANN) model to predict the tensile strength of EPOFB fiber-reinforced composites. The method involves two types of ANN, namely Radial Basis Function (RBF) and Backpropagation, with testing using variations in immersion time, volume fraction, and length of EPOFB fibers. The research results show that both ANN models can predict tensile strength with a Mean Absolute Error (MAE) below 10%. However, the Backpropagation ANN shows superior performance with a training MAE of 0.0078 and a testing MAE of 0.45, compared to the RBF ANN, which has a training MAE of 0.371 and a testing MAE of 0.53. In conclusion, ANN Backpropagation is superior in prediction accuracy and characterization efficiency of EFB fiber-reinforced composites, offering an economical solution and supporting sustainable palm oil waste management.

Downloads

Download data is not yet available.

References

Shigetomi Y, Ishimura Y, Yamamoto Y. Trends in global dependency on the Indonesian palm oil and resultant environmental impacts. Sci Rep. 2020 Nov;10(1):20624. DOI: https://doi.org/10.1038/s41598-020-77458-4

Mahardika M, Zakiyah A, Ulfa SM, Ilyas RA, Hassan MZ, Amelia D, et al. Recent Developments in Oil Palm Empty Fruit Bunch (OPEFB) Fiber Composite. Journal of Natural Fibers. 2024 Dec;21(1). DOI: https://doi.org/10.1080/15440478.2024.2309915

Faizi MK, Bakar SA, Majid MSA, Mohd SB, Tamrin, Israr HA, et al. Tensile Characterizations of Oil Palm Empty Fruit Bunch (OPEFB) Fibres Reinforced Composites in Various Epoxy/Fibre Fractions. Biointerface Res Appl Chem. 2021 Nov;12(5):6148–63. DOI: https://doi.org/10.33263/BRIAC125.61486163

Bakri B, Naharuddin, Mustafa, Seleng K, Chandrabakty S, Iqbal M, et al. Tensile Strength and Water Absorption of Oil Palm Mesocarp Fiber Reinforced Polyester Composites: Effect of Volume Fraction of Fiber. IOP Conf Ser Earth Environ Sci. 2022 Nov;1075(1):012003. DOI: https://doi.org/10.1088/1755-1315/1075/1/012003

Mujianto A, Latipah AJ, Waloyo HT, Adytama F. Effect of Fiber Immersion Time on Alkaline Treatment to the Mechanical Strength of the Composite Reinforced Oil Palm Empty Fruit Bunches (OPEFB) Fibers. 2022; DOI: https://doi.org/10.2991/978-94-6463-134-0_14

Hofmann M, Shahid AT, Machado M, Garrido M, Bordado JC, Correia JR. GFRP biocomposites produced with a novel high-performance bio-based unsaturated polyester resin. Compos Part A Appl Sci Manuf. 2022 Oct 1;161. DOI: https://doi.org/10.1016/j.compositesa.2022.107098

Zhu D, Wu HH, Hou F, Zhang J, Gao Z, Shang C, et al. A transfer learning strategy for tensile strength prediction in austenitic stainless steel across temperatures. Scr Mater. 2024 Oct;251:116210. DOI: https://doi.org/10.1016/j.scriptamat.2024.116210

Yang J, Ji C, Wang D, Zhang H, Zhou Z, Hu J, et al. Fire behavior and post-fire residual tensile strength prediction of carbon fiber/phthalonitrile composite laminates. Compos Sci Technol. 2024 Jun;252:110624. DOI: https://doi.org/10.1016/j.compscitech.2024.110624

Yamamoto G, Oshima K, Ramadhan RA, Lim T, Megra YT, Suk JW, et al. Tensile strength prediction of unidirectional polyacrylonitrile (PAN)-based carbon fiber reinforced plastic composites considering stress distribution around fiber break points. Compos Part A Appl Sci Manuf. 2024 Aug;183:108234. DOI: https://doi.org/10.1016/j.compositesa.2024.108234

Mujianto A, Waloyo HT. Studi Kelayakan Serat Tandan Kosong Kelapa Sawit Sebagai Penguat Komposit Untuk Aplikasi Lambung Kapal. Manutech : Jurnal Teknologi Manufaktur. 2023;15(1). DOI: https://doi.org/10.33504/manutech.v15i01.270

Pratama, farid M. Pengaruh Proses Alkalisasi terhadap Morfologi Serat Tandan Kosong Kelapa Sawit untuk Bahan Penguat Komposit Absorbsi Suara. JURNAL TEKNIK ITS. 2017;6. DOI: 10.12962/j23373539.v6i2.24274

Farid M. Isolasi Selulosa dari Serat Tandan Kosong Kelapa Sawit untuk Nano Filler Komposit Absorpsi Suara: Analisis FTIR. JURNAL TEKNIK ITS. 2017;6(2). DOI: 10.12962/j23373539.v6i2.24098

Lee J, Park D, Park K, Song H, Kim TS, Ryu S. Optimization of grid composite configuration to maximize toughness using integrated hierarchical deep neural network and genetic algorithm. Mater Des. 2024 Feb;238:112700. DOI: https://doi.org/10.1016/j.matdes.2024.112700

Ma S, Wu X, Fan L, Xie Z. Predicting water flux and reverse solute flux in forward osmosis processes using artificial neural networks (ANN) modelling with structural parameters. Sep Purif Technol. 2024 Dec;351:128092. DOI: https://doi.org/10.1016/j.seppur.2024.128092

Zhang M, Lin B, Ma X, Wang H, Nie L, Li L, et al. Application of artificial intelligence combined with near infrared spectroscopy in the continuous counter-current extraction process of Angelica dahurica formula granules. Spectrochim Acta A Mol Biomol Spectrosc. 2024 Dec;322:124748. DOI: https://doi.org/10.1016/j.saa.2024.124748

Hameed J, Huo C, Albasher G, Naeem MA. Revisiting the nexus between financialization and natural Resource efficiency through the lens of financial development and green industrial optimization. J Clean Prod. 2024 Aug;468:143066. DOI: https://doi.org/10.1016/j.jclepro.2024.143066

G. Nivedhitha, P. Kalpana, Rajagopal R, Anusha Rani V, Ajith. B. Singh, Sheik Sidthik A. Novel Deep Learning Neural Networks for Breast Cancer Malignancy Estimation. Journal of Advanced Research in Applied Sciences and Engineering Technology. 2024 Jun;47(1):140–51. DOI: https://doi.org/10.37934/araset.47.1.140151

Wu Z, Chen L, Xiong H. Regression algorithms-driven mechanical properties prediction of angle bracket connection on cross-laminated timber structures. Journal of Wood Science. 2024 Jan;70(1):3. DOI: https://doi.org/10.1186/s10086-023-02110-4

Yang B, Lu X, Sun S, Liang SY. Tensile strength prediction and process parameters optimization of FSW thick AA2219-T8 based on ANN-GA. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2024 Jul;46(7):388. DOI: https://doi.org/10.1007/s40430-024-04962-3

Ma M li, Huang Z kun, Liao Y hang, Zhou L yi, Jia L jie, Liang C zhen, et al. Hybrid hyperplane gradient learning algorithm for RBF neural network. Neurocomputing. 2024 Jun;587:127626. DOI: https://doi.org/10.1016/j.neucom.2024.127626

Lechuga-Gutierrez L, Chel-Puc N, Macias-Garcia E, Bayro-Corrochano E. Nested Polynomials to Increase the Plasticity of Artificial Neural Networks. In: 2022 Asia Conference on Advanced Robotics, Automation, and Control Engineering (ARACE). IEEE; 2022. p. 115–20. DOI: 10.1109/ARACE56528.2022.00028

Aggarwal C. The Backpropagation Algorithm. In: Neural Networks and Deep Learning. Cham: Springer International Publishing; 2023. p. 29–71.

Aggarwal C. Radial Basis Function Networks. In: Neural Networks and Deep Learning. Cham: Springer International Publishing; 2023. p. 215–30.

Downloads

Published

2024-11-21

How to Cite

Waloyo, H. T., Mujianto, A., & Feriyanto, R. (2024). Tensile Strength Prediction of Empty Palm Oil Bunch Fiber Composite with Artificial Neural Network. Journal of Energy, Mechanical, Material, and Manufacturing Engineering, 9(2), 77–84. https://doi.org/10.22219/jemmme.v9i2.35619

Issue

Section

Articles