Performance test of oceanic wave power generator with pendulum system

Authors

  • Achmad Zidan Bahrul Ilmi Universitas Muhammadiyah Malang
  • Mulyono Mulyono University of Muhammadiyah Malang
  • Yepy Komaril Sofi’i Universitas Muhammadiyah Malang

Abstract

A plentiful oceanic wave leads to the utilization of this energy into electricity. An oceanic wave power generator with a pendulum system is one of the innovations that can generate electricity from the ocean. This research aimed to identify the energy from the oceanic wave power generator with a pendulum system. It was conducted by experimenting with the pendulum rod that spins the gearbox in the generator. It was intended to measure the obtained electric power by variating the pendulum mass with the average oceanic wave speed. The research finding shows that the generator results in a maximum of 33 watts of electric power, while the lowest power is 9 watts with a pendulum mass of 0,6 kg.

Downloads

Download data is not yet available.

References

X. Wu, Z. Wu, Y. Wang, T. Gao, Q. Li, and H. Xu, “All-Cold Evaporation under One Sun with Zero Energy Loss by Using a Heatsink Inspired Solar Evaporator,” Adv. Sci., vol. 8, no. 7, pp. 1–10, 2021, doi: 10.1002/advs.202002501.

P. Studi, T. Mesin, F. Teknik, U. Muhammadiyah, S. Utara, and S. Utara, “Pembuatan Alat Konversi Energi Memanfaatkan Gelombang Dengan Menggunakan Teknik Kolom Osilasi,” vol. 1, no. 2, pp. 107–115, 2020.

I. K. A. P. Utama, R. Hantoro, E. Septyaningrum, Q. Khasanah, J. Prananda, and I. S. Arief, “Analysis of pontoon multi pendulum motion response trimaran model at ocean wave power plant based on pendulum system (PLTG-SB),” IOP Conf. Ser. Mater. Sci. Eng., vol. 1052, no. 1, p. 012063, 2021, doi: 10.1088/1757-899x/1052/1/012063.

J. Yang et al., “Design, optimization and numerical modelling of a novel floating pendulum wave energy converter with tide adaptation,” China Ocean Eng., vol. 31, no. 5, pp. 578–588, 2017, doi: 10.1007/s13344-017-0066-6.

M. Noviar and R. Pahlevi, “Analisis Pengaruh Variasi Putaran Poros Terhadap Daya Motor Listrik , Pengurangan Kadar Air , Dan Kapasitas Produksi Pada Mesin Manure Dewatering,” no. Senastitan Iii, pp. 1–5, 2023.

H. Suryanto and D. I. Mawarni, “Analisis Potensi Daya Mekanis Yang Dihasilkan Konverter Energi Metode Bandul Vertikal Di Air Tenang,” Simetris, vol. 13, no. 2, pp. 38–42, 2019.

F. T. Industri, “ANALISIS KARAKTERISTIK OSILASI PENDULUM PADA PLTGL-SB OSCILLATION AT PLTGL-SB,” 2016.

H. R. Anarki, “Analisa Kinerja Bandul Vertikal dengan Model Plat pada PLTGL,” J. Tek. ITS, vol. 4, no. 2, pp. 119–123, 2015.

P. Kosjoko, Kedalaman, P. Terhadap, F. Rate, and K. Kunci, “GEOMETRIK POROS HASIL BUBUT The Depth of Cut Effect on the Roundness Geometry Axis from the Result of the Lathe Machine mesin . Kerusakan tersebut umumnya disebabkan oleh geometrik poros . Salah satu geometrik poros yang faktorial dengan benda kerja baja,” vol. 3, no. 1, pp. 5–8, 2018.

X. Liang, M. J. Zuo, and Z. Feng, “Dynamic modeling of gearbox faults: A review,” Mech. Syst. Signal Process., vol. 98, pp. 852–876, 2018, doi: 10.1016/j.ymssp.2017.05.024.

H. Zhu, W. D. Zhu, and W. Fan, “Transmission belt drives : A systematic review,” J. Sound Vib., no. xxxx, p. 115759, 2020, doi: 10.1016/j.jsv.2020.115759.

J. Sim and C. S. Kim, “The value of renewable energy research and development investments with default consideration,” Renew. Energy, vol. 143, pp. 530–539, 2019, doi: 10.1016/j.renene.2019.04.140.

A. Muliawan and A. Yani, “ANALISIS DAYA DAN EFISIENSI TURBIN AIR KINETIS AKIBAT,” vol. 8, no. 1, pp. 1–9, 2016.

S. Arief et al., “Response to Pontoon and Pendulum Motion at Wave Energy Converter Based on Pendulum System,” E3S Web Conf., vol. 43, pp. 1–11, 2018, doi: 10.1051/e3sconf/20184301022.

Y. Zhang, Y. Zhao, W. Sun, and J. Li, “Ocean wave energy converters: Technical principle, device realization, and performance evaluation,” Renew. Sustain. Energy Rev., vol. 141, no. September 2020, p. 110764, 2021, doi: 10.1016/j.rser.2021.110764.

V. Elektro, “Pengaruh Modifikasi Belitan Stator Motor Induksi Satu Phasa Starting Kapasitor Pada Mesin Bor Meja Terhadap Arus dan Daya listrik serta Putaran Motor,” vol. 12, no. 02, pp. 34–43, 2020.

D. Haryadi, D. Notosudjono, and H. Soebagia, “Studi Potensi Dan Teknologi Energi Laut Di Indonesia,” J. Online Mhs. Bid. Tek. Elektro, vol. 1, no. 1, pp. 1–14, 2019, [Online]. Available: http://catatanmechanical.blogspot.com/tidal

B. C. Boren, P. Lomonaco, B. A. Batten, and R. K. Paasch, “Design, Development, and Testing of a Scaled Vertical Axis Pendulum Wave Energy Converter,” IEEE Trans. Sustain. Energy, vol. 8, no. 1, pp. 155–163, 2017, doi: 10.1109/TSTE.2016.2589221.

M. Melikoglu, “Current status and future of ocean energy sources: A global review,” Ocean Eng., vol. 148, no. June 2017, pp. 563–573, 2018, doi: 10.1016/j.oceaneng.2017.11.045.

R. O. Berriel, M. Shadman, Z. Wu, R. F. S. Dias, R. M. Stephan, and S. F. Estefen, “Hardware-in-the-loop development of a heaving point absorber wave energy converter using inertia emulation,” Electr. Eng., vol. 103, no. 6, pp. 2675–2684, 2021, doi: 10.1007/s00202-021-01244-2.

J. Pries, V. P. N. Galigekere, O. C. Onar, and G. J. Su, “A 50-kW Three-Phase Wireless Power Transfer System Using Bipolar Windings and Series Resonant Networks for Rotating Magnetic Fields,” IEEE Trans. Power Electron., vol. 35, no. 5, pp. 4500–4517, 2020, doi: 10.1109/TPEL.2019.2942065.

I. A. Syarief, A. Baidowi, and A. N. Islami, “Motion Response Analysis of Hexagonal Pontoon Wave Energy Converter,” Int. J. Mar. Eng. Innov. Res., vol. 5, no. 2, pp. 68–80, 2020, doi: 10.12962/j25481479.v5i2.5549.

P. Yulianto and A. Muliawan, “PENGARUH VARIASI PUTARAN MESIN TERHADAP DAYA PADA ENGINE CUMMINS KTTA 38 C,” vol. 05, no. April, pp. 23–32, 2016, doi: 10.24042/jpifalbiruni.v5i1.102.

K. Andreas, D. Suastiyanti, and P. Rupajati, “Peningkatan Daya Listrik Pada Generator Putaran Rendah Melalui Peningkatan Sifat Magnetik Magnet Permanen BaFe 12 O 19,” vol. 4, no. 1, pp. 12–16, 2020.

M. Marszal, B. Witkowski, K. Jankowski, P. Perlikowski, and T. Kapitaniak, “Energy harvesting from pendulum oscillations,” Int. J. Non. Linear. Mech., vol. 94, pp. 251–256, 2017, doi: 10.1016/j.ijnonlinmec.2017.03.022.

Published

2024-12-05

How to Cite

Ilmi, A. Z. B., Mulyono, M., & Sofi’i, Y. K. (2024). Performance test of oceanic wave power generator with pendulum system. Journal of Energy, Mechanical, Material, and Manufacturing Engineering, 9(1). Retrieved from https://ejournal.umm.ac.id/index.php/JEMMME/article/view/37873

Issue

Section

Articles