Bioactive Compounds Content and Pharmacological Activities of Chili Pepper (Capsicum Sp.)
DOI:
https://doi.org/10.22219/farmasains.v6i2.17401Keywords:
review tradisional, cabai, capsicum sp, senyawa bioaktif, aktivitas farmakologis, article reviewAbstract
Chili pepper (Capsicum sp.) is an essential spice belonging to the Solanaceae family. Chili pepper is consumed as a food source, additive in the food industry, and necessary medicine. Chili pepper is rich in nutrients and secondary metabolites to generate new bioactive compounds. Chili pepper fruit contains bioactive compounds including alkaloids, capsaicinoid, carotenoids (anteraxanthin, β-carotene, capsanthin, violaxanthin, β-cryptoxanthin, zeaxanthin, lutein epoxide, capsorubin, and neoxanthin), peptides (defensin, thionin-like peptide), phytol, fatty acids (myristic acid, methyl stearic, methyl linoleic), phenolic (chlorogenic acid) and flavonoids (quercetin, luteolin, rutin). The compounds in chili pepper constitute a bioactive source that acts as an antioxidant, antimicrobial, antifungal, anti-inflammatory, anti-obesity, anti-diabetic, and dyslipidemia. This review intends to describe the content of bioactive compounds that are very beneficial for health. This review is expected to increase chili consumption and its application in the food industry
Downloads
References
Al-Jumayi, H. A. O., Elhendy, H. A., & Darwish, A. M. G. (2020). Biological effects of red chili pepper (Capsicum annuum) consumption on high fat diet female albino rats. Pakistan Journal of Biological Sciences, 23(2), 150–158. https://doi.org/10.3923/pjbs.2020.150.158.
Boiko, Yu A, Shandra, A., Boiko, I., Kravchenko, I., 2019. Experimental study of the effectiveness the Capsicum annuum L. extracts for treatment of the rheumatoid arthritis. J. Phytopharm. 8: 46–51. doi:10.31254/phyto.2019.8204.
Gebara, R. Da S,, Taveira, G. B., de Azevedo dos Santos, L., Calixto, S. D., Simão, T. L. B. V., Lassounskaia, E., Muzitano, M. F., Teixeira-Ferreira, A., Perales, J., Rodrigues, R., de Oliveira Carvalho, A., & Gomes, V. M. (2020). Identification and Characterization of Two Defensins from Capsicum annuum Fruits that Exhibit Antimicrobial Activity. Probiotics and Antimicrobial Proteins, 12(3), 1253–1265. https://doi.org/10.1007/s12602-020-09647-6.
Gurnani, N., Gupta, M., Mehta, D., & Mehta, B. K. (2016). Chemical composition, total phenolic and flavonoid contents, and in vitro antimicrobial and antioxidant activities of crude extracts from red chili seeds ( Capsicum frutescens L.) . Journal of Taibah University for Science, 10(4), 462–470. https://doi.org/10.1016/j.jtusci.2015.06.011.
Hassan, N. M., Yusof, N. A., Yahaya, A. F., Rozali, N. N. M., & Othman, R. (2019). Carotenoids of Capsicum fruits: Pigment profile and health-promoting functional attributes. Antioxidants, 8(10), 1–25. https://doi.org/10.3390/antiox8100469.
Hazekawa, M., Hideshima, Y., Ono, K., Nishinakagawa, T., Kawakubo-Yasukochi, T., Takatani-Nakase, T., & Nakashima, M. (2017). Anti-inflammatory effects of water extract from bell pepper (Capsicum annuum L. var.. grossum) leaves in vitro. Experimental and Therapeutic Medicine, 14(5), 4349–4355. https://doi.org/10.3892/etm.2017.5106.
Hernández-Ortega, M., Ortiz-Moreno, A., Hernández-Navar.ro, M. D., Chamorro-Cevallos, G., Dorantes-Alvar.ez, L., & Necoechea-Mondragón, H. (2012). Antioxidant, antinociceptive, and anti-inflammatory effects of carotenoids extracted from dried pepper (Capsicum annuum L.). Journal of Biomedicine and Biotechnology, 2012. https://doi.org/10.1155/2012/524019.
Imran, M., Butt, M. S., & Suleria, H. A. R. (2019). Capsicum annuum Bioactive Compounds: Health Promotion Perspectives. January 2019, 159–180. https://doi.org/10.1007/978-3-319-78030-6_47.
Jolayemi, A. T., & Ojewole, J. A. O. (2013). Comparative anti-inflammatory properties of Capsaicin and ethyl-aAcetate extract of Capsicum frutescens linn [Solanaceae] in rats. African Health Sciences, 13(2), 357–361. https://doi.org/10.4314/ahs.v13i2.23.
Koffi-Nevry, R., Kouassi, K. C., Nanga, Z. Y., Koussémon, M., & Loukou, G. Y. (2012). Antibacterial activity of two bell pepper extracts: Capsicum annuum L. and Capsicum frutescens. International Journal of Food Properties, 15(5), 961–971. https://doi.org/10.1080/10942912.2010.509896.
Magied, M. A., Abdel Rahman Salama, N., & Rashad Ali, M. (2014). Hypoglycemic and Hypocholesterolemia Effects of Intragastric Administration of Dried Red Chili Pepper (Capsicum Annum) in Alloxan-Induced Diabetic Male Albino Rats Fed with High-Fat-Diet. Journal of Food and Nutrition Research, 2(11), 850–856. https://doi.org/10.12691/jfnr-2-11-15.
Mohammed, A., Koorbanally, N. A., & Islam, M. S. (2017). Anti-diabetic effect of Capsicum annuum L. fruit acetone fraction in a type 2 diabetes model of rats. Acta Poloniae Pharmaceutica - Drug Research, 74(6), 1767–1779.
Nascimento, P. L. A., Nascimento, T. C. E. S., Ramos, N. S. M., Silva, G. R., Gomes, J. E. G., Falcão, R. E. A., Moreira, K. A., Porto, A. L. F., & Silva, T. M. S. (2014). Quantification, Antioxidant and Antimicrobial Activity of Phenolics Isolated from Different Extracts of Capsicum frutescens (Pimenta Malagueta). Molecules, 19(4), 5434 5477 https://doi.org/10.3390/molecules19045434.
Olatunji, T. L., & Afolayan, A. J. (2019). Comparative quantitative study on phytochemical contents and antioxidant activities of Capsicum annuum L. and Capsicum frutescens L. Scientific World Journal, 2019. https://doi.org/10.1155/2019/4705140.
Palma, J. M., Terán, F., Contreras-Ruiz, A., Rodríguez-Ruiz, M., & Corpas, F. J. (2020). Antioxidant profile of pepper (Capsicum annuum L.) fruits containing diverse levels of capsaicinoids. Antioxidants, 9(9), 1–19. https://doi.org/10.3390/antiox9090878.
Pérez-Ambrocio, A., Guerrero-Beltrán, J. A., Aparicio-Fernández, X., Ávila-Sosa, R., Hernández-Carranza, P., Cid-Pérez, S., & Ochoa-Velasco, C. E. (2018). Effect of blue and ultraviolet-C light irradiation on bioactive compounds and antioxidant capacity of habanero pepper (Capsicum chinense) during refrigeration storage. Postharvest Biology and Technology, 135(June 2017), 19–26. https://doi.org/10.1016/j.postharvbio.2017.08.023.
Sarpras, M., Gaur, R., Sharma, V., Chhapekar, S. S., Das, J., Kumar, A., Yadava, S. K., Nitin, M., Brahma, V., Abraham, S. K., & Ramchiary, N. (2016). Comparative analysis of fruit metabolites and pungency candidate genes expression between Bhut jolokia and other Capsicum species. PLoS ONE, 11(12), 1–19. https://doi.org/10.1371/journal.pone.0167791.
Sarpras, M., Chhapekar, S. S., Ahmad, I., Abraham, S. K., & Ramchiary, N. (2018). Analysis of bioactive components in Ghost chili (Capsicum chinense) for antioxidant, genotoxic, and apoptotic effects in mice. Drug and Chemical Toxicology, 43(2), 182–191. https://doi.org/10.1080/01480545.2018.1483945.
Sarpras, M., Ahmad, I., Rawoof, A., & Ramchiary, N. (2019). Comparative analysis of developmental changes of fruit metabolites, antioxidant activities and mineral elements content in Bhut jolokia and other Capsicum species. Lwt, 105(February), 363–370. https://doi.org/10.1016/j.lwt.2019.02.020.
Sotto, A. D., Vecchiato, M., Abete, L., Toniolo, C., Giusti, A. M., Mannina, L., Locatelli, M., Nicoletti, M., & Di Giacomo, S. (2018). Capsicum annuum L. var. Cornetto di Pontecorvo PDO: Polyphenolic profile and in vitro biological activities. Journal of Functional Foods, 40(November 2017), 679–691. https://doi.org/10.1016/j.jff.2017.11.041.
Tang, J., Luo, K., Li, Y., Chen, Q., Tang, D., Wang, D., Xiao, J., 2015. Capsaicin attenuates LPS-induced inflammatory cytokine production by upregulation of LXRα. Int. Immunopharmacol. 28: 264–269. doi:10.1016/j.intimp.2015.06.007.
Taveira, G. B., Carvalho, A. O., Rodrigues, R., Trindade, F. G., Da Cunha, M., & Gomes, V. M. (2016). Thionin-like peptide from Capsicum annuum fruits: Mechanism of action and synergism with fluconazole against Candida species. Applied microbiology. BMC Microbiology, 16(1), https://doi.org/10.1186/s12866-016-0626-6.
Tundis, R., Menichini, F., Bonesi, M., Conforti, F., Statti, G., Menichini, F., & Loizzo, M. R. (2013). Antioxidant and hypoglycaemic activities and their relationship to phytochemicals in Capsicum annuum cultivars during fruit development. LWT - Food Science and Technology, 53(1), 370–377. https://doi.org/10.1016/j.lwt.2013.02.013.
Vargas-Hernández, M., Torres-Pacheco, I., Gautier, F., Álvar.ez-Mayorga, B., Cruz-Hernández, A., García-Mier, L., Jiménez-García, S. N., Ocampo-Velázquez, R. V., Feregrino-Perez, A. A., & Guevar.a-Gonzalez, R. G. (2017). Influence of hydrogen peroxide foliar applications on in vitro antimicrobial activity in Capsicum chinense Jacq. Plant Biosystems, 151(2), 269–275. https://doi.org/10.1080/11263504.2016.1168494.
Wahyuni, Y., Ballester, A. R., Sudarmonowati, E., Bino, R. J., & Bovy, A. G. (2013). Secondary metabolites of Capsicum species and their importance in the human diet. Journal of Natura Products, 76(4),783,793 https://doi.org/10.1021/np300898z
Zamljen, T., Zupanc, V., & Slatnar, A. (2020). Influence of irrigation on yield and primary and secondary metabolites in two chilies species, Capsicum annuum L. and Capsicum chinense Jacq. Agricultural Water Management, 234(February), 106104. https://doi.org/10.1016/j.agwat.2020.106104.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Swastiari Dwi Yanti and Warsi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).