Liposome as Mucosal Vaccine Drug Delivery System

Authors

  • Kuni Zuaimah Barikah Universitas Negeri Jember

DOI:

https://doi.org/10.22219/farmasains.v7i1.20390

Keywords:

mucosal vaccine, liposome, targeted liposome

Abstract

Vaccines are a pharmaceutical product that is used to overcome infectious diseases and are a new therapeutic strategy for chronic disease treatment, recently.  However, the parenteral route as the main route of vaccination nowadays has several limitations, so mucosal vaccines rise as a potential alternative for vaccine delivery. A few research found that mucosal vaccines have better immune protection against pathogens.  Liposome, a biodegradable particulate drug delivery system, offers the most promising future as a mucosal vaccine delivery system because of its versatility. A liposome can act as an adjuvant by direct stimulation of immune response in several ways. Several liposome properties that affect system uptake after mucosal administration are size, surface charge, and hydrophilicity. To enhance liposome ability as mucosal vaccine, targeted liposomes, such as mannose receptor-targeted liposome, macrophage galactose-type C-type lectins (MGL) targeted liposome, DC-specific intracellular adhesion molecule-3 grabbing non-integrin (DC-SIGN), and M cells targeted liposome then developed.

Downloads

Download data is not yet available.

References

Baca-Estrada, M.E., Foldvari, M., Snider, M., Harding,K., Kournikakis, B., Babiuk, L.A., Griebel, P. 2000. Intranasal Immunization with Liposome-Formulated Yersinia pestis Vaccine Enhances Mucosal Immune Response. Vaccine, 18, 2203-2211. https://doi.org/10.1016/s0264-410x(00)00019-0.

Bernasconi, V., Norling, K., Bally, M., Hӧӧk, F., Lycke, N.Y. 2016. Mucosal Vaccine Development Based on Liposome Technology. Journal of Immunology Research, 2016,5482087. https://doi.org/10.1155/2016/5482087.

Channarong, S., Chaicumpa, W., Sinchaipanid, N., Mitrevej, A. 2011. Development and Evaluation of Chitosan-Coated Liposomes for Oral DNA Vaccine : The Improvement of Peyer’s Patch Targeting Using a Polyplex-Load Liposomes. American Association of Pharmaceutical Sciences, 12 (1), 192-200. https://doi.org/10.1208/s12249-010-9559-9.

Christensen, D., Foged., C., Rosekrands, I., Lundberg, CV., Andersen, P., Agger, EM., Nielsen, HM., 2010. CAF01 Liposomes as a Mucosal Vaccine Adjuvant : In Vitro and In Vivo Investigations. International Journal of Pharmaceutics, 390, 19-24. https://doi.org/10.1016/j.ijpharm.2009.10.043.

Clark, M.A., Blair, H., Liang, L., Brey, R.N., Brayden, D., Hirst, B.H. 2002. Targeting Polymerised Liposome Vaccine Carriers to Intestinal M Cells. Vaccine, 20, 208-17. https://doi.org/10.1016/s0264-410x(01)00258-4.

Fan, Y., Wang, D., Hu, Y., Liu, J., Han, G., Zhao, X., Yuan, J., Liu, C., Liu, X., Ni, X. 2012. Liposome and Epimedium Polysaccharide-Propolis Flavone can Synergistically Enhance Immune Effect of Vaccine. International Journal of Biological Macromolecules, 50, 125-30. https://doi.org/10.1016/j.ijbiomac.2011.10.008.

Gupta, P.N. 2015. Mucosal Vaccine Delivery and M Cell Targeting. In : Devarajan, P.V., Jain, S. (Eds). Targeted Drug Delivery: Concepts and Design, Advances in Delivery Science and Technology. Springer : Controlled Release Society, 313-37.

Gupta, P.N., Vyas, S.P. 2011. Investigation of Lectinized Liposomes as M-Cell Targeted Carrier-Adjuvant for Mucosal Immunization. Colloids and Surfaces B: Biointerfaces, 82, 118-125. https://doi.org/10.1016/j.colsurfb.2010.08.027.

Henderson, A., Propst, K., Kedl, R., Dow, S. 2011. Mucosal Immunization with Liposome-Nucleic Acid Adjuvants Generates Effective Humoral and Cellular Immunity. Vaccine, 29, 5304-12. https://doi.org/10.1016/j.vaccine.2011.05.009

Jepson, M.A., Clark, M.A., Hirst, B.H. 2004. M Cell Targeting by Lectins : A Strategy for Mucosal Vaccination and Drug Delivery. Advanced Drug Delivery Reviews, 56, 511-25. https://doi.org/10.1016/j.addr.2003.10.018.

Jiang, P.L., Lin, H.J., Wang, H.W., Tsai, W.Y., Lin, S.F., Chien, M.Y., Liang, P.H., Huang, Y.Y., Liu, D.Z. 2015. Galactosylated Liposome as a Dendritic Cell-Targeted Mucosal Vaccine for Inducing Protective Anti-Tumor Immunity. Acta Biomaterialia, 11,356-67. https://doi.org/10.1016/j.actbio.2014.09.019

Joshi, M.D., Unger, W.W.J., van Beelen, A.J., Bruijns, S.C., Litjens, M., van Bloois, L., Kalay, H., van Kooyk, Y., Storm, G. 2011. DC-SIGN Mediated Antigen-Targeting Using Glycan-Modified Liposome : Formulation Consideration. International Journal of Pharmaceutics, 416, 426-32. https://doi.org/10.1016/j.ijpharm.2011.02.055.

Kraan, H., Vrieling, H., Czerkinsky, C., Jiskoot, W., Kersten, G., Amorij, J. 2014. Buccal and Sublingual Vaccine Delivery. Journal of Controlled Release, 190, 580-92. https://doi.org/10.1016/j.jconrel.2014.05.060

Liau, J.J., Hook, S., Prestidge, C.A., Barnes, T.J. 2015. A Lipid Based Multi-Compartmental System : Liposomes –In-Double Emulsion for Oral Vaccine Delivery. European Journal of Pharmaceutics and Biopharmaceutics, 97(A), 15-21. https://doi.org/10.1016/j.ejpb.2015.09.018

Lockner, J.W., Ho, SO., McCague, K.C., Chiang, S.M., Do, T.Q., Fujii, G., Janda, K.D. 2013. Enhancing Nicotine Vaccine Immunogenicity with Liposomes. Bioorganic and Medicinal Chemistry Letters, 23, 975-8. https://doi.org/10.1016/j.bmcl.2012.12.048.

Ma, Y., Zhuang, Y., Xie, X., Wang, C., Wang, F., Zhou, D., Zeng, J., Cai, L. 2011. The Role of Surface Charge Density in Cationic Liposome-Promoted Dendritic Maturation and Vaccine-Induced Immune Responses. Nanoscale, 3, 2307-14. https://doi.org/10.1039/c1nr10166h

Masarini, N., Ghaffar, KA., Skwarcynski, M., Toth, I. 2017. Liposomes as a Vaccine Delivery System, In : Skwarcynski, M., Toth, I (Eds). Micro- and Nanotechnology in Vaccine Development. Oxford: Elsevier, 221-39.

Minato, S., Iwanaga, K., Kakemi, M., Yamashita, S., Oku,,N. 2003. Application of Polyethyleneglycol (PEG)-Modified Liposomes for Oral Vaccine: Effect of Lipid Dose on Systemic and Mucosal Immunity. Journal of Controlled Release, 89, 189-97. https://doi.org/10.1016/s0168-3659(03)00093-2.

Neutra, M.R., Kozlowski, P.A. 2006. Mucosal Vaccine : The Promise and The Challenge. Nature Reviews Immunology, 6, 148-58. https://doi.org/10.1038/nri1777.

Ogue, S., Takahashi, Y., Onishi, H., Machida, Y. 2006. Preparation of Double Liposomes and Their Efficiency as an Oral Vaccine Carrier. Biol.Pharm.Bull, 29(6), 1223-8. https://doi.org/10.1248/bpb.29.1223.

Rosenkrands, I., Vingso-Lundberg, C., Bundgaard, T.J., Lindestrөm, T., Enouf, V., van der Werf, S., Andersen, P., Agger EM. 2011. Enhanced Humoral and Cell-Mediated Immune Responses After Immunization with Trivalent Influenza Vaccine Adjuvanted with Cationic Liposomes. Vaccine, 29, 6283-6291. https://doi.org/j.vaccine.2011.06.040

Shariat, S., Badiee, A., Jalali, S.A., Mansourian, M., Yazdani, M., Mortazavi, S.A., Jaafari, M.R. 2014. P5 HER2/Neu-Derived Peptide Conjugated to Liposome Containing MPL Adjuvant as an Effective Prophylactic Vaccine Formulation for Breast Cancer. Cancer Letters, 355, 54-60. https://doi.org/10.1016/j.canlet.2014.09.016.

Soema, P.C., Willems, G.J., Jiskoot, W., Amorij, J.P., Kersten, G.F. 2015. Predicting the Influence of Liposomal Lipid Composition on Liposome Size, Zeta Potential and Liposome-Induced Dendritic Cell Maturation Using a Design of Experiments Approach. European Journal of Pharmaceutics and Biopharmaceutics, 94, 427-35. https://doi.org/10.1016/j.ejpb.2015.06.026

Tada, R., Suzuki, H., Takahashi, S., Negishi, Y., Kiyono, H. 2018. Nasal Vaccination With Pneumococcal Surface Protein A in Combination with Cationic Liposomes Consisting of DOTAP and DC-Chol Confers Antigen-Mediated Protective Immunity Against Streptococcus pneumonia Infections in Mice. International Immunopharmacology, 61, 385-93. https://doi.org/10.1016/j.intimp.2018.06.027.

Tlaxca, J.L., Ellis, S., Remmele, R.L Jr. 2015. Live Attenuated Inactivated Viral Vaccine Formulation and Nasal Delivery : Potential and Challenges. Advanced Drug Delivery Reviews,93, 56-78. https://doi.org/10.1016/j.addr.2014.10.002

Trentini, M.M., de Oliveira, F.M., Gaeti M.P.N., Batista, A.C., Lima, E.M., Kipnis, A., Junqueira-Kipnis, A.P. 2014. Microstructured Liposome Subunit Vaccines Reduce Lung Inflammation and Bacterial Load After Mycobacterium tuberculosis Infection. Vaccine, 32, 4324-32. https://doi.org/10.1016/j.vaccine.2014.06.037.

Tyagi, R.K., Garg, N.K., Jadon, R., Sahu, T., Katare, O.P., Dalai, S.K., Awasthi, A., Marepally, S.K. 2015. Elastic Liposome-Mediated Transdermal Immunization Enhanced the Immunogenicity of P.falciparum Surface Antigen, MSP-119. Vaccine, 33(36), 4630-8. https://doi.org/10.1016/j.vaccine.2015.06.054.

Unger, W.W.J., van Beelen, A.J., Bruijns, S.C., Joshi, M., Fehres, C.M., van Bloois, L., Verstege, M.I., Ambrosini, M., Kalay, H., Nazmi, K., Bolscher, J.G., Hooijberg, E., de Gruijl, T.D., Storm, G., van Kooyk, Y. 2012. Glycan-Modified Liposomes Boost CD4+ and CD8+ T-Cell Responses by Targeting DC-SIGN on Dendritic Cells. Journal of Controlled Release, 160, 88-95. https://doi.org/10.1016/j.jconrel.2012.02.007.

van Kooyk, Y., Unger, WWJ., Fehres, CM., Kalay, H., Garcia-Vallejo, JJ. 2013. Glycan-Based DC-SIGN Targeting Vaccines to Enhance Antigen Cross-Presentation. Molecular Immunology, 53, 143-5. https://doi.org/10.1016/j.molimm.2012.10.031.

Vangasseri, D.P., Cui, Z., Chen, W., Hokey, D.A., Falo, L.D Jr., Huang,, L. 2006. Immunostimulation of Dendritic Cells by Cationic Liposomes. Molecular Membrane Biology, 23(5), 385-95. https://doi.org/10.1080/09687860600790537.

Wang, C., Zhuang, Y., Zhang, Y., Luo, Z., Gao,N., Li, P., Pan, H., Cai, L., Ma, Y. 2012. Toll-Like Receptor 3 Agonist Complexed with Cationic Liposome Augments Vaccine-Elicited Antitumor Immunity by Enhancing TLR3-IRF3 Signaling and Type I Interferon in Dendritic Cells. Vaccine, 30, 4790-4799. https://doi.org/10.1016/j.vaccine.2012.05.027.

Wang, D., Christopher, M.E., Nagatam L.P., Zabielski, M.A., Li, H., Wong, J.P., Samuel, J. 2004. Intranasal Immunization with Liposome-Encapsulated Plasmid DNA Encoding Influenza Virus Hemagglutinin Elicits Mucosal, Cellular and Humoral Immune Responses. Journal of Clinical Virology, 31S, S99-S106. https://doi.org/10.1016/j.jcv.2004.09.013.

Wang, H.W., Jiang, P.L., Lin, S.F., Lin, H.J., Ou, K.L., Deng, W.P., Lee, L.W., Huang, Y.Y., Liang, P.H., Liu, D.Z. 2013. Application of Galactose-Modified Liposomes as a Potent Antigen Presenting Cell Targeted Carrier for Intranasal Immunization. Acta Biomaterialia, 9, 5681-8. https://doi.org/10.1016/j.actbio.2012.11.007

Wang, N, Zhen, Y., Jin, Y., Wang, X., Li, N., Jiang, S., Wang, T. 2017. Combining Different Types of Multifunctional Liposome Loaded with Ammonium Bicarbonate to Fabricate Microneedle Arrays as a Vaginal Mucosal Vaccine Adjuvant-Dual Delivery System (VADDS). Journal of Controlled Release, 246, 12-29. https://doi.org/10.1016/j.jconrel.2016.12.009.

Wang, N., Wang, T., Zhang, M., Chen, R., Niu, R., Deng, Y. 2014. Mannose Derivative and Lipid A Dually Decorated Cationic Liposomes as an Effective Cold Chain Free Oral Mucosal Vaccine Adjuvant-Delivery System. European Journal of Pharmaceutics and Biopharmaceutics, 88, 194-206. https://doi.org/10.1016/j.ejpb.2014.04.007.

Wang, T., Zhen, Y., Ma, X., Wei, B., Li, S., Wang, N. 2015. Mannosylated and Lipid A-Incorporating Cationic Liposomes Constituting Microneedle Arrays as an Effective Oral Mucosal HBV Vaccine Applicable in the Controlled Temperature Chain. Colloids and Surfaces B: Biointerfaces,126, 520-530. https://doi.org/10.1016/j.colsurfb.2015.01.005.

Watarai, S., Iwase, T., Tajima, T., Yuba, E., Kono, K., Sekiya, Y. 2014. Application of pH-Sensitive Fusogenic Polymer-Modified Liposomes for Development of Mucosal Vaccines. Veterinary Immunology and Immunopathology, 158, 62-72. https://doi.org/10.1016/j.vetimm.2013.05.005

Watson, D., Endsley, A.N., Huang, L. 2012. Design Consideration for Liposomal Vaccines : Influences of Formulation Parameters on Antibody and Cell-Mediated Immune Responses to Liposome Associated Antigens. Vaccine, 30, 2256-72. https://doi.org/10.1016/j.vaccine.2012.01.070

Wong, J.P., Zabielski, M.A., Schmaltz, F.L., Brownlee, G.G., Bussey, L.A., Marshall, K., Borralho, T., Nagata, L.P., 2001. DNA Vaccination Against Respiratory Influenza Virus Infection. Vaccine, 19, 2461-7. https://doi.org/10.1016/s0264-410x(00)00474-6.

Yusuf, H., Ali, AA., Orr, N., Tunney, MM., McCarthy, HO., Kett, VL. 2017. Novel Freeze-Dried DDA and TPGS Liposomes are Suitable for Nasal Delivery of Vaccine. International Journal of Pharmaceutics, 553 (1), 179-86. https://doi.org/10.1016/j.ijpharm.2017.09.011

Zhen, Y., Wang, N., Gao, Z., Ma, X., Wei, B., Deng, Y., Wang, T. 2015. Multifunctional Liposomes Constituting Microneedles Induced Robust Systemic and Mucosal Immunoresponses Against the Loaded Antigens Via Oral Mucosal Vaccination. Vaccine, 33(35), 4330-4340. https://doi.org/10.1016/j.vaccine.2015.03.081.

Downloads

Published

2022-06-21

How to Cite

Barikah, K. Z. (2022). Liposome as Mucosal Vaccine Drug Delivery System. Farmasains : Jurnal Farmasi Dan Ilmu Kesehatan, 7(1). https://doi.org/10.22219/farmasains.v7i1.20390

Issue

Section

Pharmaceutical Technology