Comparison Of ARIMA And Exponential Smoothing Holt-Winters Methods For Forecasting CPI In The Tegal City, Central Java

Authors

  • Ika Efrilia Badan Pusat Statistik Kota Tegal

DOI:

https://doi.org/10.22219/jep.v19i02.18040

Keywords:

Comparison of Forecasting Methods, Economic Index Forecasting, Price Movement of Goods and Services

Abstract

The Consumer Price Index (CPI) is an essential economic index that shows the level of prices for goods and services consumed by the public in a certain period in a specific region so that forecasting the ICP is needed to find out the pattern of economic movement in the area. The purpose of this study is to determine the forecasting rate for CPI from July 2021 to June 2022 by comparing two forecasting methods, i.e., ARIMA and Exponential Smoothing Holt-Winters. The data used in this study is Tegal City CPI data for January 2014 - June 2021, with the year 2018 as the base year equals 100 with a time series of 90 observations. The backcasting technique was implemented to the CPI figures of January 2014 – December 2019 (Base Year 2012=100) to adjust the new Base Year following 2018 on Classification of Individual Consumption According to Purpose (COICOP). The results from the two methods show that the Exponential Holt-Winters method has a minor Mean Absolute Percentage Error (MAPE) value, which is 0.281 compared to the MAPE of ARIMA value of 0.311. Hence, the Exponential Holt-Winters Additive method is chosen as the best CPI forecasting model for Tegal City

Downloads

Download data is not yet available.

References

Ais Kumila, Baqiyatus Sholihah, Evizia, Nur Safitri, S. F. (2019). Perbandingan Metode Moving Average dan Metode Naïve Dalam Peramalan Data Kemiskinan. JTAM | Jurnal Teori Dan Aplikasi Matematika, 3(1), 65. https://doi.org/10.31764/jtam.v3i1.764

Arumningsih, L. D., & Darsyah, M. Y. (2018). Peramalan Indeks Harga Konsumen Kota Malang Tahun 2014–2016 dengan Menggunakan Metode Moving Average dan Exponential Smoothing Holt-Winter. Prosiding Seminar Nasional …, 1(January 2018), 310–315.

Aswi dan Sukarna (2006). Analisis Deret Waktu: Teori dan Aplikasi. Makasar, Andhira Pubslisher.

Biri Romy, AR Langi Yohanes, S.Paendong Maline (2013). Penggunaan Metode Smoothing ekspnensial Dalam Meramal Pergerakan Inflasi Kota Palu. Jurnal Ilmiah Sains Vol 13 No 1 April 2013.

Boediono (2001). Ekonomi Makro (Seri Sinopsis Pengantar Ilmu Ekonomi No 2.). Yogyakarta: BPFE Edisi 4

Desvina, A, P., & Desmita, E. (2015). Penerapan Metode Box-Jenkins Dalam Meramalkan Indeks Harga Konsumen Di Kota Pekanbaru. Jurnal Sains Matematika Dan Statistika, 1(1), 39–47.

Gunaryati, A., & Suhendra, A. (2015). Perbandingan Antara Metode Statistika Dan Metode Neural Network Pada Model Peramalan Indeks Harga Perdagangan Besar. Jurnal Teknologi Dan Rekayasa, 20(1), 23–35.

Gusti Ayu Made Arna Putri, Ni Putu Nanik Hendayanti, M. N. (2017). e-ISSN 2581-2017 Pemodelan Data Deret Waktu Dengan Autoregressive Integrated Moving Average Dan Logistic Smoothing Transition Autoregressive Gusti Ayu Made Arna Putri. Jurnal Varian, 1(1), 54.

Hartati, H. (2017). Penggunaan Metode Arima Dalam Meramal Pergerakan Inflasi. Jurnal Matematika Sains Dan Teknologi, 18(1), 1–10. https://doi.org/10.33830/jmst.v18i1.163.2017

Izzah, N. (2020). Forecasting of Indonesia’s Gross Domestic Product Amid Covid-19 Pandemic. Jouranl of Islamic Economic and Business, 3(2), 257–281. Https://Doi.Org/10.21154/Elbarka.V4i1.3016

Jatmiko, Y. A., Rahayu, R. L., & Darmawan, G. (2017). Perbandingan Keakuratan Hasil Peramalan Produksi Bawang Merah Metode Holt-Winters Dengan Singular Spectrum Analysis (Ssa). Jurnal Matematika “MANTIK,” 3(1), 13. https://doi.org/10.15642/mantik.2017.3.1.13-24

Kasmir. (2009). Pengantar Manajemen Keuangan. Jakarta: Kencana.

Kondo Lembang, F. (2017). Prediksi Laju Inflasi Di Kota Ambon Menggunakan Metode ARIMA Box Jenkins. STATISTIKA: Journal of Theoretical Statistics and Its Applications, 16 (22),95-102.https://doi.org/10.29313/jstat.v16i2.2188

Lailani, P. (2010). Analisis Runtun Waktu Peminat Program Studi Pendidikan Matematika Fkip Universitas Jember Menggunakan Metode Exponential Smoothing.

Mahmudi, M., Irwandi, R., Rahmadaini, R., & Fadhilah, R. (2018). Meramalkan Laju Inflasi Menggunakan Metode Pemulusan Eksponensial Ganda. Journal of Data Analysis, 1(1), 12–20. https://doi.org/10.24815/jda.v1i1.11863

Makridakis, S., SC, W., & RJ, H. (1999). Forecasting: Methods and Applications. John Wiley & Sons, Inc.

Mankiw, Euston Quah, Peter Wilson (2013). Microeconomics. Salemba Empat.

Mukron, M. H., Susianti, I., Azzahra, F., Kumala, Y. N., Widiyana, R., & Haris, M. Al. (2021). Peramalan Indeks Harga Konsumen Indonesia Menggunakan Autoregressive Integrated MOVING AVARAGE. Jurnal Statistika Industri Dan Komputasi, 6(1), 20–25.

Mutmainnah. (2019). Perbandingan Metode Sarima Dan Exponential Smoothing Holt-Winters Dalam Meramalkan Curah Hujan Di Kota Makassar. In Skripsi.

Nugraha, E. Y., & Suletra, I. W. (2017). Analisis Metode Peramalan Permintaan Terbaik Produk Oxycan pada PT. Samator Gresik. Seminar Dan Konferensi Nasional IDEC, 2579–6429. https://www.google.com/search?rlz=1C1CHBF_enID883ID884&ei=4cpdXt6OD47RrQHjm5jIDA&q=jurnal+tentang+metode+peramalan&oq=jurnal+tentang+peramalan&gs_l=psyab.3.4.0l3j0i22i30l7.1592741.1598642..1602835...1.2..0.203.2703.14j10j1......0....1..gws-wiz.......0i71

Omane-adjepong, M., Oduro, F. T., & Oduro, S. D. (2013). Determining the Better Approach for Short-Term Forecasting of Ghana’s Inflation: Seasonal-ARIMA vs Holt-Winters. International Journal of Business, Humanitiies and Technology, 3(1), 69–79.

Pebrianti, A., Utami, A. S., Putri, A. T., & Fitriana, A. (2021). Proyeksi Laju Inflasi di Indonesia Dengan Metode ARIMA (Autoregressive Integrated Moving Average ) Proyeksi Laju Inflasi di Indonesia Dengan Metode ARIMA (Autoregressive Integrated Moving Average ). Https://Www.Researchgate.Net/Publication/353037444, July.

Pradana, R. S. (2019). Kajian Perubahan Dan Volatilitas Harga. JIEP-Vol. 19, No 2, November 2019 ISSN (P) 1412-2200 E-ISSN 2548-1851, 19(2).

Rahmawati, F. I., Eltivia, N., & Susilowati, K. D. S. (2020). Peramalan Kedatangan Wisatawan Mancanegara Indonesia: Metode Holt’S Winter Exponential Smoothing. Media Mahardhika, 18(2), 233. https://doi.org/10.29062/mahardika.v18i2.152

Rizaldy D Z (2017). Pengaruh Harga Komoditas Pangan Terhadap Inflasi Di Kota Malang Tahun 2011-2016. Jurnal Ekonomi Pembangunan vol 15, No.2, Desember 2017

SARI, M. A. N., SUMARJAYA, I. W., & SUSILAWATI, M. (2019). Peramalan Jumlah Kunjungan Wisatawan Mancanegara Ke Bali Menggunakan Metode Singular Spectrum Analysis. E-Jurnal Matematika, 8(4), 303. https://doi.org/10.24843/mtk.2019.v08.i04.p269

Sartika, D. ., & Nasution, H. . (2018). Penggunaan Metode Smoothing Eksponensial Dalam Meramal Pergerakan Inflasi Di Kota Medan. KARISMATIKA: Kumpulan Artikel Ilmiah, Informatika, Statistik, Matematika Dan Aplikasi, 3(1), 24–35. https://doi.org/10.24114/jmk.v3i1.8823

Wahyuningsih, Diah; Zuhroh, Idah; Zainuri, -. Prediksi Inflasi Indonesia dengan Model Artificial Neural Network. Journal of Indonesian Applied Economics, [S.l.], v. 2, n. 2, may 2012. ISSN 2541-5395. Available at: <https://jiae.ub.ac.id/index.php/jiae/article/view/146>.Date ccessed: 05 sep. 2021. doi:http://dx.doi.org/10.21776/ub.jiae.2008.002.02.7.

Yulinar I. Ajunu, Novianita Achmad, M. R. F. P. (2020). Perbandingan Metode Autoregressive Integrated Moving Average Dan Metode Double Exponential Smoothing Dari Holt Dalam Meramalkan Nilai Impor Di Indonesia. Jambura Journal Of Probability And Statistics, 1(Juwairiah 2009),1–12Https://Doi.Org/Https://Doi.Org/10.34312/Jjps.V1i1.5393

Downloads

Published

2021-12-11