Comparison Of ARIMA And Exponential Smoothing Holt-Winters Methods For Forecasting CPI In The Tegal City, Central Java
DOI:
https://doi.org/10.22219/jep.v19i02.18040Keywords:
Comparison of Forecasting Methods, Economic Index Forecasting, Price Movement of Goods and ServicesAbstract
The Consumer Price Index (CPI) is an essential economic index that shows the level of prices for goods and services consumed by the public in a certain period in a specific region so that forecasting the ICP is needed to find out the pattern of economic movement in the area. The purpose of this study is to determine the forecasting rate for CPI from July 2021 to June 2022 by comparing two forecasting methods, i.e., ARIMA and Exponential Smoothing Holt-Winters. The data used in this study is Tegal City CPI data for January 2014 - June 2021, with the year 2018 as the base year equals 100 with a time series of 90 observations. The backcasting technique was implemented to the CPI figures of January 2014 – December 2019 (Base Year 2012=100) to adjust the new Base Year following 2018 on Classification of Individual Consumption According to Purpose (COICOP). The results from the two methods show that the Exponential Holt-Winters method has a minor Mean Absolute Percentage Error (MAPE) value, which is 0.281 compared to the MAPE of ARIMA value of 0.311. Hence, the Exponential Holt-Winters Additive method is chosen as the best CPI forecasting model for Tegal City
Downloads
References
Ais Kumila, Baqiyatus Sholihah, Evizia, Nur Safitri, S. F. (2019). Perbandingan Metode Moving Average dan Metode Naïve Dalam Peramalan Data Kemiskinan. JTAM | Jurnal Teori Dan Aplikasi Matematika, 3(1), 65. https://doi.org/10.31764/jtam.v3i1.764
Arumningsih, L. D., & Darsyah, M. Y. (2018). Peramalan Indeks Harga Konsumen Kota Malang Tahun 2014–2016 dengan Menggunakan Metode Moving Average dan Exponential Smoothing Holt-Winter. Prosiding Seminar Nasional …, 1(January 2018), 310–315.
Aswi dan Sukarna (2006). Analisis Deret Waktu: Teori dan Aplikasi. Makasar, Andhira Pubslisher.
Biri Romy, AR Langi Yohanes, S.Paendong Maline (2013). Penggunaan Metode Smoothing ekspnensial Dalam Meramal Pergerakan Inflasi Kota Palu. Jurnal Ilmiah Sains Vol 13 No 1 April 2013.
Boediono (2001). Ekonomi Makro (Seri Sinopsis Pengantar Ilmu Ekonomi No 2.). Yogyakarta: BPFE Edisi 4
Desvina, A, P., & Desmita, E. (2015). Penerapan Metode Box-Jenkins Dalam Meramalkan Indeks Harga Konsumen Di Kota Pekanbaru. Jurnal Sains Matematika Dan Statistika, 1(1), 39–47.
Gunaryati, A., & Suhendra, A. (2015). Perbandingan Antara Metode Statistika Dan Metode Neural Network Pada Model Peramalan Indeks Harga Perdagangan Besar. Jurnal Teknologi Dan Rekayasa, 20(1), 23–35.
Gusti Ayu Made Arna Putri, Ni Putu Nanik Hendayanti, M. N. (2017). e-ISSN 2581-2017 Pemodelan Data Deret Waktu Dengan Autoregressive Integrated Moving Average Dan Logistic Smoothing Transition Autoregressive Gusti Ayu Made Arna Putri. Jurnal Varian, 1(1), 54.
Hartati, H. (2017). Penggunaan Metode Arima Dalam Meramal Pergerakan Inflasi. Jurnal Matematika Sains Dan Teknologi, 18(1), 1–10. https://doi.org/10.33830/jmst.v18i1.163.2017
Izzah, N. (2020). Forecasting of Indonesia’s Gross Domestic Product Amid Covid-19 Pandemic. Jouranl of Islamic Economic and Business, 3(2), 257–281. Https://Doi.Org/10.21154/Elbarka.V4i1.3016
Jatmiko, Y. A., Rahayu, R. L., & Darmawan, G. (2017). Perbandingan Keakuratan Hasil Peramalan Produksi Bawang Merah Metode Holt-Winters Dengan Singular Spectrum Analysis (Ssa). Jurnal Matematika “MANTIK,” 3(1), 13. https://doi.org/10.15642/mantik.2017.3.1.13-24
Kasmir. (2009). Pengantar Manajemen Keuangan. Jakarta: Kencana.
Kondo Lembang, F. (2017). Prediksi Laju Inflasi Di Kota Ambon Menggunakan Metode ARIMA Box Jenkins. STATISTIKA: Journal of Theoretical Statistics and Its Applications, 16 (22),95-102.https://doi.org/10.29313/jstat.v16i2.2188
Lailani, P. (2010). Analisis Runtun Waktu Peminat Program Studi Pendidikan Matematika Fkip Universitas Jember Menggunakan Metode Exponential Smoothing.
Mahmudi, M., Irwandi, R., Rahmadaini, R., & Fadhilah, R. (2018). Meramalkan Laju Inflasi Menggunakan Metode Pemulusan Eksponensial Ganda. Journal of Data Analysis, 1(1), 12–20. https://doi.org/10.24815/jda.v1i1.11863
Makridakis, S., SC, W., & RJ, H. (1999). Forecasting: Methods and Applications. John Wiley & Sons, Inc.
Mankiw, Euston Quah, Peter Wilson (2013). Microeconomics. Salemba Empat.
Mukron, M. H., Susianti, I., Azzahra, F., Kumala, Y. N., Widiyana, R., & Haris, M. Al. (2021). Peramalan Indeks Harga Konsumen Indonesia Menggunakan Autoregressive Integrated MOVING AVARAGE. Jurnal Statistika Industri Dan Komputasi, 6(1), 20–25.
Mutmainnah. (2019). Perbandingan Metode Sarima Dan Exponential Smoothing Holt-Winters Dalam Meramalkan Curah Hujan Di Kota Makassar. In Skripsi.
Nugraha, E. Y., & Suletra, I. W. (2017). Analisis Metode Peramalan Permintaan Terbaik Produk Oxycan pada PT. Samator Gresik. Seminar Dan Konferensi Nasional IDEC, 2579–6429. https://www.google.com/search?rlz=1C1CHBF_enID883ID884&ei=4cpdXt6OD47RrQHjm5jIDA&q=jurnal+tentang+metode+peramalan&oq=jurnal+tentang+peramalan&gs_l=psyab.3.4.0l3j0i22i30l7.1592741.1598642..1602835...1.2..0.203.2703.14j10j1......0....1..gws-wiz.......0i71
Omane-adjepong, M., Oduro, F. T., & Oduro, S. D. (2013). Determining the Better Approach for Short-Term Forecasting of Ghana’s Inflation: Seasonal-ARIMA vs Holt-Winters. International Journal of Business, Humanitiies and Technology, 3(1), 69–79.
Pebrianti, A., Utami, A. S., Putri, A. T., & Fitriana, A. (2021). Proyeksi Laju Inflasi di Indonesia Dengan Metode ARIMA (Autoregressive Integrated Moving Average ) Proyeksi Laju Inflasi di Indonesia Dengan Metode ARIMA (Autoregressive Integrated Moving Average ). Https://Www.Researchgate.Net/Publication/353037444, July.
Pradana, R. S. (2019). Kajian Perubahan Dan Volatilitas Harga. JIEP-Vol. 19, No 2, November 2019 ISSN (P) 1412-2200 E-ISSN 2548-1851, 19(2).
Rahmawati, F. I., Eltivia, N., & Susilowati, K. D. S. (2020). Peramalan Kedatangan Wisatawan Mancanegara Indonesia: Metode Holt’S Winter Exponential Smoothing. Media Mahardhika, 18(2), 233. https://doi.org/10.29062/mahardika.v18i2.152
Rizaldy D Z (2017). Pengaruh Harga Komoditas Pangan Terhadap Inflasi Di Kota Malang Tahun 2011-2016. Jurnal Ekonomi Pembangunan vol 15, No.2, Desember 2017
SARI, M. A. N., SUMARJAYA, I. W., & SUSILAWATI, M. (2019). Peramalan Jumlah Kunjungan Wisatawan Mancanegara Ke Bali Menggunakan Metode Singular Spectrum Analysis. E-Jurnal Matematika, 8(4), 303. https://doi.org/10.24843/mtk.2019.v08.i04.p269
Sartika, D. ., & Nasution, H. . (2018). Penggunaan Metode Smoothing Eksponensial Dalam Meramal Pergerakan Inflasi Di Kota Medan. KARISMATIKA: Kumpulan Artikel Ilmiah, Informatika, Statistik, Matematika Dan Aplikasi, 3(1), 24–35. https://doi.org/10.24114/jmk.v3i1.8823
Wahyuningsih, Diah; Zuhroh, Idah; Zainuri, -. Prediksi Inflasi Indonesia dengan Model Artificial Neural Network. Journal of Indonesian Applied Economics, [S.l.], v. 2, n. 2, may 2012. ISSN 2541-5395. Available at: <https://jiae.ub.ac.id/index.php/jiae/article/view/146>.Date ccessed: 05 sep. 2021. doi:http://dx.doi.org/10.21776/ub.jiae.2008.002.02.7.
Yulinar I. Ajunu, Novianita Achmad, M. R. F. P. (2020). Perbandingan Metode Autoregressive Integrated Moving Average Dan Metode Double Exponential Smoothing Dari Holt Dalam Meramalkan Nilai Impor Di Indonesia. Jambura Journal Of Probability And Statistics, 1(Juwairiah 2009),1–12Https://Doi.Org/Https://Doi.Org/10.34312/Jjps.V1i1.5393
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Jurnal Ekonomi Pembangunan
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Jurnal Ekonomi Pembangunan (JEP) agree to the following terms:
- For all articles published in Jurnal Ekonomi Pembangunan (JEP), copyright is retained by the authors. Authors permit the publisher to announce the work with conditions. When the manuscript is accepted for publication, the authors agree to the publishing right's automatic transfer to the publisher.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) before and during the submission process, as it can lead to productive exchanges and earlier and greater citation of published work (See The Effect of Open Access).
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.