Disparities Among Districts in Central Java Province: Cluster Analysis Based on Several Well-Being Indicators
DOI:
https://doi.org/10.22219/jep.v20i01.19364Keywords:
cluster analysis, well-being indicators, regional disparitiesAbstract
This paper aims to group districts in Central Java Provinces based on several well-being indicators published by The National Statistics Agency of Indonesia (BPS) in 2019. The Ward method used hierarchical cluster analysis to group districts and identified disparities among clusters. The results show that districts in Central Java can be divided into 3 clusters: cluster 1 consists of 4 sections with a high level of well-being; cluster 2 consists of 16 districts with a moderate level of well-being; and cluster 3 consists of 15 districts with the low level of well-being. The average variable score for each cluster indicates disparities among groups. The variable score for cluster 1 with the high level of well-being is far above the score for clusters 2 and 3 in economics, education, sanitation, and public health. Only four districts belong to the cluster with a high level of well-being, all of which have administrative status as a city. In contrast, communities with a low level of well-being all have a managerial position as regencies. The results also found that districts in the western part of Central Java tend to have a lower level of well-being than the eastern part of Central Java. Thus, Central Java Province needs to pay more attention to districts in cluster 3 with a low level of well-being, especially in the western part of Central Java in terms of economy, education, sanitation, and public health.
Downloads
References
Aaberge, R., & Brandolini, A. (2015). Chapter 3 - Multidimensional Poverty and Inequality. In A. B. Atkinson & F. B. T.-H. of I. D. Bourguignon (Eds.), Handbook of Income Distribution (Vol. 2, pp. 141–216). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-59428-0.00004-7
Afira, N., & Wijayanto, A. W. (2021). Analisis Cluster dengan Metode Partitioning dan Hierarki pada Data Informasi Kemiskinan Provinsi di Indonesia Tahun 2019. Komputika : Jurnal Sistem Komputer, 10(2), 101–109. https://doi.org/10.34010/komputika.v10i2.4317
Anggara, P. G. (2019). Analisis Faktor - Faktor Yang Mempengaruhi Ketimpangan Pembangunan Antar Kabupaten/ Kota di Provinsi Sumatera Utara. UNIMED.
Barrington-Leigh, C., & Escande, A. (2018). Measuring Progress and Well-Being: A Comparative Review of Indicators. Social Indicators Research, 135(3), 893–925. https://doi.org/10.1007/s11205-016-1505-0
Bourguignon, F., & Chakravarty, S. R. (2019). The Measurement of Multidimensional Poverty BT - Poverty, Social Exclusion and Stochastic Dominance (S. R. Chakravarty (ed.); pp. 83–107). Springer Singapore. https://doi.org/10.1007/978-981-13-3432-0_7
BPS. (2019a). Statistik Kesejahteraan Rakyat Provinsi Jawa Tengah. BPS.
BPS. (2019b). Statistik Statistik Sosial dan Kependudukan Provinsi Jawa Tengah Hasil Susenas 2019. BPS.
BPS. (2020). Provinsi Jawa Tengah dalam Angka 2020. BPS.
Döpke, J., Knabe, A., Lang, C., & Maschke, P. (2017). Multidimensional Well-being and Regional Disparities in Europe. JCMS: Journal of Common Market Studies, 55(5), 1026–1044. https://doi.org/https://doi.org/10.1111/jcms.12551
Efmona, R., Tan, F., & Kamarni, N. (2021). The Analysis of Cooperative Development on Padang Municipality Economy. Jurnal Ekonomi Pembangunan, 19(1), 1–19. https://doi.org/10.22219/jep.v19i01.15457
Evanza, S. S. (2018). Analisis Ketimpangan Distribusi Pendapatan Provinsi di Indonesia dan Faktor-Faktor yang Mempengaruhi Tahun 2011-2016. UNS.
Facchinetti, S., & Siletti, E. (2021). Well-being Indicators: a Review and Comparison in the Context of Italy. Social Indicators Research, 0123456789. https://doi.org/10.1007/s11205-021-02761-0
Fahrizal, Sarfiah, S. N., & Juliprijanto, W. (2019). Analisis ketimpangan ekonomi provinsi jawa tengah tahun 2008-2017. DINAMIC: Directory Journal of Economic, 1(4), 399–417. http://jom.untidar.ac.id/index.php/dinamic/article/view/803/459
Fathia, A. N., Rahmawati, R., & Tarno, T. (2016). Analisis klaster kecamatan di kabupaten semarang berdasarkan potensi desa menggunakan metode ward dan single linkage. Jurnal Gaussian, 5(4), 801–810.
Fitriyah, L., & Prabowo, P. (2021). Analisis Ketimpangan Pendapatan Dan Pengembangan Sektor Unggulan Wilayah Kota Di Provinsi Jawa Timur Tahun 2010-2019. INDEPENDENT : Journal of Economics, 1(2 SE-Article). https://ejournal.unesa.ac.id/index.php/independent/article/view/40741
Goletsis, Y., & Chletsos, M. (2011). Measurement of development and regional disparities in Greek periphery: A multivariate approach. Socio-Economic Planning Sciences, 45(4), 174–183. https://doi.org/10.1016/j.seps.2011.06.002
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate data analysis (7th ed.). London: Pearson Education Limited.
Handayani, W. (2013). Rural-Urban Transition in Central Java: Population and Economic Structural Changes Based on Cluster Analysis. In Land (Vol. 2, Issue 3). https://doi.org/10.3390/land2030419
Hidayat, R., Wasono, R., & Darsyah, M. Y. (2017). Pengelompokan Kabupaten/Kota Di Jawa Tengah Menggunakan Metode K-Means Dan Fuzzy C-Means. Prosiding Seminar Nasional & Internasional, 240–250. https://jurnal.unimus.ac.id/index.php/psn12012010/article/view/3017/2932
Jordá, V., & Sarabia, J. M. (2015). International Convergence in Well-Being Indicators. Social Indicators Research, 120(1), 1–27. https://doi.org/10.1007/s11205-014-0588-8
Karim, N. A., Utama, I. D., & Aryanto, R. (2019). Comparative Study of Economic Development Inequality among Regency/City in West Java Province. ISEI Economic Review, III(1), 28–34. http://jurnal.iseibandung.or.id/index.php/ier
Kose, I. A., & Demirtasli, N. C. (2012). Comparison of Unidimensional and Multidimensional Models Based on Item Response Theory in Terms of Both Variables of Test Length and Sample Size. Procedia - Social and Behavioral Sciences, 46, 135–140. https://doi.org/https://doi.org/10.1016/j.sbspro.2012.05.082
Kusumawardani, B. (2018). Analisis Multivariate K-Means Cluster Untuk Mengelompokkan Kabupaten/Kota di Provinsi Jawa Tengah Berdasarkan IPM dan Komponen IPM Tahun 2017. UNNES.
Lee, S. (2018). A Research on the effect of ICT Capability on the Society's Welfare: Multidimensional Deprivation Analysis including Technology as Attributes. http://hdl.handle.net/10419/190398
Munandar, T., Azhari, Mushdholifah, A., & Arsyad, L. (2017). Preface: International Conference on Recent Trends in Physics (ICRTP 2016). IOP Conference Series: Materials Science and Engineering, 180(1). https://doi.org/10.1088/1757-899X/180/1/012074
Nadif, M., & Govaert, G. (2010). Cluster Analysis. Data Analysis, November 2012, 215–255. https://doi.org/10.1002/9780470611777.ch7
Noviar, N. (2021). Analisis Ketimpangan Dan Klasifikasi Pembangunan Ekonomi Kabupaten/Kota Di Provinsi Banten Tahun 2016-2020. Jurnal Kebijakan Pembangunan Daerah, 5(1), 24–33. https://doi.org/10.37950/jkpd.v5i1.118
Nuarta, L. D. (2018). Analisis Determinan Ketimpangan Pembangunan Wilayah Di Provinsi Jawa Tengah 1998-2015. Skripsi Fakultas Ekonomi Dan Bisnis, Universitas …. https://core.ac.uk/download/pdf/148619504.pdf
Pamiati, B. A. (2021). Analisis Pengaruh Populasi, Pertumbuhan Ekonomi, dan IPM Terhadap Ketimpangan Pembangunan di Kawasan Barlingmascakeb Tahun 2013-2019. UNDIP.
Purwana, A. E. (2014). Kesejahteraan dalam Perspektif Ekonomi Islam. Justicia Islamica, 11(1). https://doi.org/10.21154/justicia.v11i1.91.
Pusdiktasari, Z. F., Sasmita, W. G., Fitrilia, R., Fitriani, R., & Astutik, S. (2021). Pengelompokkan Provinsi di Indonesia dengan Ekonomi Terdampak Covid-19 Menggunakan Analisis Cluster. 5(1), 117–129.
Putriana, U., Setyawan, Y., & Noeryanti. (2016). Metode Cluster Analysis Untuk Pengelompokan Kabupaten / Kota Di Provinsi Jawa Tengah Berdasarkan Variabel Yang Mempengaruhi Kemiskinan Pada Tahun 2013. Jurnal Statistika Industri Dan Komputasi, 1(1), 38–52.
Raheem, E., Khan, J. R., & Hossain, M. S. (2019). Regional disparities in maternal and child health indicators: Cluster analysis of districts in Bangladesh. PLoS ONE, 14(2), 1–12. https://doi.org/10.1371/journal.pone.0210697
Romyen, A. (2021). The development of the special economic zone and the cluster approaches. The case in southern Thailand. Kasetsart Journal of Social Sciences, 42(3), 463–472. https://doi.org/10.34044/j.kjss.2021.42.3.03
Sari, Y. A. (2018). Analisis Ketimpangan Wilayah Antarkabupaten/Kota Di Kawasan Subosukawonosraten Tahun 2001-2016. UGM.
Sukwika, T. (2018). Peran Pembangunan Infrastruktur terhadap Ketimpangan Ekonomi Antarwilayah di Indonesia. Jurnal Wilayah Dan Lingkungan, 6(2), 115. https://doi.org/10.14710/jwl.6.2.115-130
Suryono, A. (2018). Kebijakan Publik Untuk Kesejahteraan Rakyat. Transparansi Jurnal Ilmiah Ilmu Administrasi, 6(2), 98–102. https://doi.org/10.31334/trans.v6i2.33
Wahyuningsih, T., Bugis, M., & Bin-Tahir, S. Z. (2019). Analysis of the inequality on inter-regional and inter-time income distribution in Indonesia. Journal of Social Sciences Research, 5(1), 1–8. https://doi.org/10.32861/jssr.51.1.8
Widiastuti, M., & AG, E. Y. (2012). Pemetaan Kemiskinan Kabupaten/Kota di Provinsi Jawa Tengah Tahun 2002 dan 2010 Menggunakan Analisis Klaster. Diponegoro Journal of Economics, 1(1), 1–14. http://ejournal-s1.undip.ac.id/index.php/jme
Widyadhana, D., Hastuti, R. B., Kharisudin, I., & Fauzi, F. (2021). Perbandingan Analisis Klaster K-Means dan Average Linkage untuk Pengklasteran Kemiskinan di Provinsi Jawa Tengah. PRISMA, Prosiding Seminar Nasional Matematika 4, 4, 584–594.
Wijayanti, O. M. K., & Arsyad, L. (2019). Analisis Distribusi Pendapatan dan Ketimpangan Pendapatan Wilayah di Provinsi Jawa Tengah. UGM.
Yulianto, S., & Hidayatullah, K. H. (2016). Analisis Klaster Untuk Pengelompokan Kabupaten/Kota Di Provinsi Jawa Tengah Berdasarkan Indikator Kesejahteraan Rakyat. Statistika, 2(1), 56–63. https://jurnal.unimus.ac.id/index.php/statistik/article/view/1115
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Jurnal Ekonomi Pembangunan
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Jurnal Ekonomi Pembangunan (JEP) agree to the following terms:
- For all articles published in Jurnal Ekonomi Pembangunan (JEP), copyright is retained by the authors. Authors permit the publisher to announce the work with conditions. When the manuscript is accepted for publication, the authors agree to the publishing right's automatic transfer to the publisher.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) before and during the submission process, as it can lead to productive exchanges and earlier and greater citation of published work (See The Effect of Open Access).
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.