The Impact of Fuel Prices Increasing on Inflation in South Sulawesi using Pulse Function Intervention Analysis

Authors

DOI:

https://doi.org/10.22219/jep.v21i02.23202

Keywords:

intervention model, pulse function, ARIMA, input variable

Abstract

South Sulawesi Province is considered capable of controlling inflation, as seen from its not very large volatility. However, this does not mean that the increase in fuel prices does not impact inflation in South Sulawesi. This study aims to obtain the best model to analyze the impact of rising fuel prices on inflation in South Sulawesi using Pulse Function Intervention Analysis and to find out how significant the impact of rising fuel prices on inflation in South Sulawesi is. The data in this study were obtained from the Central Statistics Agency (BPS) of South Sulawesi Province, namely the monthly inflation of South Sulawesi Province for the period January 2014 – September 2022, with a total of 105 observations. The best model in this study is the MA ([12]) bbm1, bbm5, and bbm6 models with AIC 104.09. Statistical test results show that 3 of 6 times increases in fuel prices since 2014 still influence the rising inflation, namely in November 2014, April 2022, and September 2022. The increase in fuel prices in 2014 impacted rising inflation by 1.97 percent, while in 2022, it increased inflation by 0.92 and 0.99 percent.

Downloads

Download data is not yet available.

Author Biography

Nucke Widowati Kusumo Projo, Politeknik Statistika STIS

A lecturer at the STIS statistical polytechnic who has written various articles. Her articles are especially in the fields of economics and statistics, which have been published in various journals, some of which are indexed by Scopus. She is a writer with an H-index 3 on Scopus.

References

BI. (2020, September 21). Inflasi. Bank Indonesia. https://www.bi.go.id/id/fungsi-utama/moneter/inflasi/default.aspx

BPS. (2022, September 21). Inflasi. Badan Pusat Statistik. https://www.bps.go.id/subject/3/inflasi.html#subjekViewTab1

Damayanti, S., & Yosmar, S. (2021). Model Intervensi Fungsi Step Untuk Peramalan Harga Saham Pt. Garuda Indonesia (Persero) Tbk Di Masa Pandemi Covid-19. Jurnal Riset Dan Aplikasi Matematika, 5(1), 10–18. https://doi.org/10.26740/jram.v5n1

Ekayanti, R., Mara, M. N., & Sulistianingsih, E. (2014). Analisis Model Intervensi Fungsi Step untuk Peramalan Kenaikan Tarif Dasar Listrik (TDL) Terhadap Besarnya Pemakaian Listrik. Buletin Ilmiah Mat. Stat. Dan Terapannya (Bimaster), 03(3), 175–184. http://dx.doi.org/10.26418/bbimst.v3i03.7353

Jejak Kenaikan Harga BBM. (2022, September 3). Jejak Kenaikan Harga BBM di Era Pemerintahan Jokowi. Kompas.Com.

https://nasional.kompas.com/read/2022/09/03/19593621/jejak-kenaikan-harga-bbm-di-era-pemerintahan-jokowi

Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2008). Introduction to Time Series Analysis and Forecasting. John Wiley & Sons.

Pusposari, L. F. (2016). Pengaruh Harga BBM Terhadap Inflasi Di Jawa Timur. J-PIPS, Vol. 3, 1, 47–67. https://doi.org/10.18860/jpips.v3i1.6854

Rauf, R. A., Lamusa, A., Bahri, S., Laihi, M. A. A., & Effendy, E. (2020). Model Peramalan Inflasi Bahan Makanan Primer dengan Pendekatan Box-Jenkins: Studi kasus di Kota Palu. AGRIEKONOMIKA, 9(1), 16–27. https://doi.org/10.21107/agriekonomika.v9i1.6440

Sadewo, E. (2013). Pemodelan Inflasi Provinsi Riau Menggunakan ARIMA Dengan Deteksi Outlier dan Model Intervensi. ResearchGate, January 2013, 1–10. https://doi.org/10.13140/RG.2.2.11823.12963

Sejarah Harga BBM. (2022, August 29). Sejarah Harga BBM Naik: Dari Masa Soekarno Hingga Jokowi. Timesindonesia.Co.Id.

https://www.timesindonesia.co.id/read/news/425605/sejarah-harga-bbm-naik-dari-masa-soekarno-hingga-jokowi

Sumantria, F., & Latifah, U. (2019). The Influence of Interest Rate, Money Circulation, Inflation, and CPI Against Export And Import in Indonesia 2012-2018. Jurnal Ekonomi Pembangunan (JEP), 17(02), 108–118. https://doi.org/10.22219/jep.v17i2.10242

Wei, W. W. S. (2006). Time Series Analysis Univariate and Multivariate Methods (Second Edition). Pearson Education.

Zhang, Y., Wu, P., Shan, B., Pan, T., Chen, W., Yan, T., Zeng, M., Lin, Y., & Qiu, L. (2019). Research on Intervention Analysis Model of Medium-to-long-term Electric Power Substitution Policy. IOP Conference Series: Earth and Environmental Science, 252(3), 1–6. https://doi.org/10.1088/1755-1315/252/3/032080

Downloads

Published

2022-12-31