Studi Parametrik Kuat Tekan Mortar Geopolimer Abu Terbang

Authors

DOI:

https://doi.org/10.22219/jmts.v18i2.12921

Keywords:

curing, fly ash, geopolymer, parametric study

Abstract

Abu terbang adalah limbah berbentuk butiran halus atau bubuk berasal dari aktivitas pembakaran batu bara. Abu terbang biasanya digunakan sebagai material timbunan dan pupuk tanaman, namun dalam penelitian lebih lanjut abu terbang dapat dimanfaatkan sebagai pengganti sebagian maupun semen pada mortar. Material abu terbang diaktifkan dengan kombinasi natrium hidroksida dan natrium silikat yang dikenal sebagai geopolimer. Penelitian ini bertujuan untuk mendapatkan komposisi optimum kuat tekan mortar geopolimer abu terbang dari parameter konsentrasi natrium hidroksida, modulus silikat, dan tamabahan OPC. Abu terbang yang digunakan adalah kelas F, dan dimanfaatkan sebagai bahan dasar mortar untuk plester. Mortar dibuat dengan mencampurkan abu terbang, pasir, natrium hidroksida dan natrium silikat serta superplasticizer, lalu mortar dicetak dan didiamkan selama tiga hari (rest period).  Sampel dirawat pada suhu ruang dan dilakukan uji kuat tekan mortar umur 7, 14, dan 28 hari. Hasil pengujian studi parametrik menunjukkan komposisi optimum mortar geopolimer abu terbang dapat dibuat dengan kombinasi variabel natrium hidroksida 12M, modulus silikat 2 dan tambahan OPC sebesar 30% pada suhu ruang.

Downloads

Download data is not yet available.

References

Abdulkareem, O. A., Mustafa Al Bakri, A. M., Kamarudin, H., Khairul Nizar, I., & Saif, A. A. (2014). Effects of elevated temperatures on the thermal behavior and mechanical performance of fly ash geopolymer paste, mortar and lightweight concrete. Construction and Building Materials, 50, 377–387.

Ameri, F., Shoaei, P., Zareei, S. A., & Behforouz, B. (2019). Geopolymers vs. alkali-activated materials (AAMs): A comparative study on durability, microstructure, and resistance to elevated temperatures of lightweight mortars. Construction and Building Materials, 222, 49–63.

Arinaldo, D., Adiatma, J. C., Mursanti, E., Turmiwa, F., & Citraningrum, M. (2019). Dinamika Batu Bara Indonesia (Pertama). Institute for Essential Services Reform (IESR).

Assi, L. N., Eddie Deaver, E., & Ziehl, P. (2018). Effect of source and particle size distribution on the mechanical and microstructural properties of fly ash-based geopolymer. Construction and Building Materials, 167, 372–380.

Bakri, A. M. M. Al, Kamarudin, H., Bnhussain, M., Nizar, I. K., & Rafiza, A. R. (2011). Microstructure of different NaOH molarity of fly ash- based green polymeric cement. 3(February), 44–49.

Baykara, H., Cornejo, M. H., Espinoza, A., García, E., & Ulloa, N. (2020). Preparation, characterization, and evaluation of compressive strength of polypropylene fiber reinforced geopolymer mortars. Heliyon, 6(4).

Chi, M. (2015). Effects of modulus ratio and dosage of alkali-activated solution on the properties and micro-structural characteristics of alkali-activated fly ash mortars. Construction and Building Materials, 99, 128–136.

Damayanti, R. (2018). Abu Batubara dan Pemanfaatannya: Tinjauan Teknis Karakteristik Secara Kimia dan Toksikologinya. Jurnal Teknologi Mineral Dan Batubara, 14(September), 213–231.

Davidovits, J. (1994). Properties of Geopolymer Cements. First International Conference on Alkaline Cements and Concretes, 131–149.

Fernandez-Jimenez, A., Palomo, A., & Criado, M. (2005). Microstructure development of alkali-activated fly ash cement : a descriptive model. 35, 1204–1209.

Hadi, M. N. S., Al-Azzawi, M., & Yu, T. (2018). Effects of fly ash characteristics and alkaline activator components on compressive strength of fly ash-based geopolymer mortar. Construction and Building Materials, 175, 41–54.

Hamidi, R. M., Man, Z., & Azizli, K. A. (2016). Concentration of NaOH and the Effect on the Properties of Fly Ash Based Geopolymer. Procedia Engineering, 148, 189–193.

Hardjito, D., & Rangan, B. V. (2005). Development and Properties of Low-Calcium Fly Ash-based Geopolymer Concrete. In Research report GC.

Huseien, G. F., Mirza, J., Ismail, M., & Hussin, M. W. (2016). Influence of different curing temperatures and alkali activators on properties of GBFS geopolymer mortars containing fly ash and palm-oil fuel ash. Construction and Building Materials, 125, 1229–1240.

İlkentapar, S., Atiş, C. D., Karahan, O., & Görür Avşaroğlu, E. B. (2017). Influence of duration of heat curing and extra rest period after heat curing on the strength and transport characteristic of alkali activated class F fly ash geopolymer mortar. Construction and Building Materials, 151, 363–369.

Joseph, B., & Mathew, G. (2012). Influence of aggregate content on the behavior of fly ash based geopolymer concrete. Scientia Iranica, 19(5), 1188–1194.

Khalil, M. G., Elgabbas, F., El-Feky, M. S., & El-Shafie, H. (2020). Performance of geopolymer mortar cured under ambient temperature. Construction and Building Materials, 242, 118090.

Moradikhou, A. B., Esparham, A., & Jamshidi Avanaki, M. (2020). Physical & mechanical properties of fiber reinforced metakaolin-based geopolymer concrete. Construction and Building Materials, 251, 118965.

Naghizadeh, A., & Ekolu, S. O. (2019). Method for comprehensive mix design of fly ash geopolymer mortars. Construction and Building Materials, 202, 704–

Olivia, M. (2015). Geopolimer sebagai Material Infrastruktur Berkelanjutan di Lingkungan Gambut. Annual Civil Engineering Seminar, 6.

Shill, S. K., Al-Deen, S., Ashraf, M., & Hutchison, W. (2020). Resistance of fly ash based geopolymer mortar to both chemicals and high thermal cycles simultaneously. Construction and Building Materials, 239, 117886.

Tenepalli, J. S., & Neeraja, D. (2018). Properties of class F fly ash based geopolymer mortar produced with alkaline water. Journal of Building Engineering, 19, 42–48.

Downloads

Published

2020-12-12

Issue

Section

Articles