Sistem Teknologi Ramah Lingkungan Batako Komposit Tahan Api Sebagai Material Dinding Bangunan

Authors

  • Dessy Triana Program Studi Teknik Sipil-Fakultas Teknik-Universitas Serang Raya, Banten, Indonesia
  • Meassa Monikha Sari Program Studi Teknik Sipil-Fakultas Teknik-Universitas Serang Raya, Banten, Indonesia

DOI:

https://doi.org/10.22219/jmts.v21i1.28901

Abstract

Teknologi ramah lingkungan adalah pemanfaatan limbah sebagai bahan pengganti sumber daya alam. Salah satunya dapat dicapai dengan mengganti agregat penyusun batako dengan material limbah. Pada penelitian ini, penggunaan agregat halus berupa pasir digantikan dengan limbah fly ash yang berasal dari PLTU Banten 3 Lontar Omu untuk pembuatan batako komposit tahan api. Benda uji yang digunakan berupa batako sebanyak 40 buah dengan perbandingan normal 1PC:6PS, sedangkan batako komposit 1PC:5.5PS:0.5FA, 1PC:5PS:1FA, 1PC:4.5PS:1.5FA. 1PC:4PS:2FA. Setelah batako berumur 28 hari, dilakukan pembakaran selama 60 menit dengan pengukuran suhu setiap 10 menit. Hasil penelitian menunjukkan bahwa pada batako campuran normal, terjadi perubahan warna pada menit ke-60 untuk bagian yang terpapar api, sedangkan bagian yang tidak terpapar api mulai mengeluarkan asap. Sementara itu, batako komposit fly ash menunjukkan ketahanan yang lebih baik, dengan bagian yang terpapar api mengalami sedikit perubahan warna dan bagian yang tidak terpapar api tidak mengeluarkan asap. Dengan demikian, batako komposit fly ash dengan pembakaran selama 60 menit masih dapat dikategorikan sebagai batako tahan api.

Downloads

Download data is not yet available.

References

Ahmad, M. R., Chen, B., Haque, M. A. & Shah, S. F. A. (2020). Utilization of industrial and hazardous waste materials to formulate energy-efficient hygrothermal bio-composites. Journal of Cleaner Production, 250(xxxx), 119469. https://doi.org/10.1016/j.jclepro.2019.119469

Aldefae, A. H. H., Essa, A. F. & Edan, A. S. (2020). Fire resistance of selected construction materials. AIP Conference Proceedings, 2213(March). https://doi.org/10.1063/5.0000053

Alterary, S. S. & Marei, N. H. (2021). Fly ash properties, characterization, and applications: A review. Journal of King Saud University - Science, 33(6), 101536. https://doi.org/10.1016/j.jksus.2021.101536

Amran, M., Fediuk, R., Murali, G., Avudaiappan, S. & Ozbakkaloglu, T. (2021). Fly Ash-Based Eco-Efficient Concretes : A Comprehensive Review of the Short-Term Properties. 1–41.

Arezoumandi, M. & Volz, J. S. (2013). Effect of fly ash replacement level on the shear strength of high-volume fly ash concrete beams. Journal of Cleaner Production, 59, 120–130. https://doi.org/10.1016/j.jclepro.2013.06.043

Bhatt, A., Priyadarshini, S., Acharath Mohanakrishnan, A., Abri, A., Sattler, M. & Techapaphawit, S. (2019). Physical, chemical, and geotechnical properties of coal fly ash: A global review. Case Studies in Construction Materials, 11, e00263. https://doi.org/10.1016/j.cscm.2019.e00263

Eliche-Quesada, D., Sandalio-Pérez, J. A., Martínez-Martínez, S., Pérez-Villarejo, L. & Sánchez-Soto, P. J. (2018). Investigation of use of coal fly ash in eco-friendly construction materials: fired clay bricks and silica-calcareous non fired bricks. Ceramics International, 44(4), 4400–4412. https://doi.org/10.1016/j.ceramint.2017.12.039

Kowsalya, M., Sindhu Nachiar, S., Sekar, A. & Ravichandran, P. T. (2022). Study on Mechanical and Microstructural Properties of Concrete with Fly Ash Cenosphere as Fine Aggregate—A Sustainable Approach. Buildings, 12(10). https://doi.org/10.3390/buildings12101679

Naganathan, S., Subramaniam, N. & Nasharuddin Bin Mustapha, K. (2012). Development of brick using thermal power plant bottomash and fly ash. Asian Journal of Civil Engineering, 13(2).

Nayak, D. K., Abhilash, P. P., Singh, R., Kumar, R. & Kumar, V. (2022). Fly ash for sustainable construction: A review of fly ash concrete and its beneficial use case studies. In Cleaner Materials (Vol. 6). https://doi.org/10.1016/j.clema.2022.100143

Nguyen, H. H. T., Nguyen, H. T., Ahmed, S. F., Rajamohan, N., Yusuf, M., Sharma, A., Arunkumar, P., Deepanraj, B., Tran, H. T., Al-Gheethi, A. & Vo, D. V. N. (2023). Emerging waste-to-wealth applications of fly ash for environmental remediation: A review. Environmental Research, 227. https://doi.org/10.1016/j.envres.2023.115800

Pati, P. K. & Sahu, S. K. (2020). Innovative utilization of fly ash in concrete tiles for sustainable construction. Materials Today: Proceedings, 33(xxxx), 5301–5305. https://doi.org/10.1016/j.matpr.2020.02.971

Rastogi, A. & Paul, V. K. (2020). A critical review of the potential for fly ash utilisation in construction-specific applications in India. Environmental Research, Engineering and Management, 76(2), 65–75. https://doi.org/10.5755/J01.EREM.76.2.25166

Varadharajan, S., Kirthanashri, S. V, Maurya, N., Bishetti, P., Shukla, B. K. & Bharti, G. (2023). Utilization of Fly Ash in Concrete: A State-of-the-Art Review. Lecture Notes in Civil Engineering, 281. https://doi.org/10.1007/978-981-19-4731-5_17

Xu, G. & Shi, X. (2018). Characteristics and applications of fly ash as a sustainable construction material: A state-of-the-art review. In Resources, Conservation and Recycling (Vol. 136, pp. 95–109). Elsevier B.V. https://doi.org/10.1016/j.resconrec.2018.04.010

Zhang, D., Zhang, S. & Yang, Q. (2023). Effect of Replacing Fine Aggregate with Fly Ash on the Performance of Mortar. In Materials (Vol. 16, Issue 12). https://doi.org/10.3390/ma16124292

Downloads

Published

2023-02-27

How to Cite

Triana, D., & Sari, M. M. (2023). Sistem Teknologi Ramah Lingkungan Batako Komposit Tahan Api Sebagai Material Dinding Bangunan. Media Teknik Sipil, 21(1), 26–31. https://doi.org/10.22219/jmts.v21i1.28901