Pemanfaatan Zeolit dengan Aktivasi Fisik sebagai Bahan Pengganti Semen pada Beton Berpori

Authors

  • Ahmad Yudi Teknik Sipil - Fakultas Teknologi Infrastruktur dan Kewilayahan - Institut Teknologi Sumatera, Indonesia
  • Andry Yuliyanto Teknik Sipil - Fakultas Teknologi Infrastruktur dan Kewilayahan - Institut Teknologi Sumatera, Indonesia
  • P Kirtinanda Teknik Sipil - Fakultas Teknologi Infrastruktur dan Kewilayahan - Institut Teknologi Sumatera, Indonesia
  • Chevin Gerhard Teknik Sipil - Fakultas Teknologi Infrastruktur dan Kewilayahan - Institut Teknologi Sumatera, Indonesia
  • Edward Riyadi Irawan Teknik Sipil - Fakultas Teknologi Infrastruktur dan Kewilayahan - Institut Teknologi Sumatera, Indonesia

DOI:

https://doi.org/10.22219/jmts.v22i2.34686

Abstract

Beberapa tahun terakhir, populasi di kota dan pinggiran kota telah meningkat secara signifikan, area yang dahulu tertutup oleh tanah dan dapat menyerap air kini tergantikan oleh infraastruktur trotoar, jalan, dan tempat parkir. Beton Poros (PC) merupakan solusi sederhana dan tahan lama yang meniru karakteristik hidrologi alami tanah. Penggunaan semen dapat digantikan dengan metode subtitusi zeolit. Berat semen digunakan sebagai faktor dalam pencampuran beton. Dengan mengetahui berat semen, kita dapat menentukan jumlah semen yang dibutuhkan untuk campuran beton, dengan mempertimbangkan berat jenis zeolit sebagai faktor pengganti. Penelitian dilakukan dengan tujuan mendapatkan nilai kuat tekan, porositas, permeabilitas, kehilangan abrasi dari beton poros. Zeolit yang diaktivasi fisik dan tidak diaktivasi fisik berpengaruh terhadap setiap pengujian yang dilakukan dan mendapatkan perbedaan hasil yang signifikan dilihat dari analisis ANOVA (Analysis of Variance). Kekuatan tekan maksimum ditemukan pada variasi zeolit aktivasi 15% pada nilai 10,75 MPa, dan Porositas dan permeabilitas tertinggi terdapat pada variasi subtitusi zeolit 20% tidak diaktivasi dengan nilai 12,5%; 0,55(cm/s), nilai abrasi terendah pada pengujian cantabro didapat pada variasi zeolit 15% aktivasi dengan nilai 30,27% dari nilai sebelum pengujian.

Downloads

Download data is not yet available.

References

Akkaya, A., & Çağatay, İ. H. (2021). Investigation of the density, porosity, and permeability properties of pervious concrete with different methods. Construction and Building Materials, 294. https://doi.org/10.1016/j.conbuildmat.2021.123539

Amini, K., Wang, X., & Delatte, N. (2018). Statistical Modeling of Hydraulic and Mechanical Properties of Pervious Concrete Using Nondestructive Tests. Journal of Materials in Civil Engineering, 30(6). https://doi.org/10.1061/(asce)mt.1943-5533.0002268

Cox, B. C., Smith, B. T., Howard, I. L., & James, R. S. (2017). State of Knowledge for Cantabro Testing of Dense Graded Asphalt. Journal of Materials in Civil Engineering, 29(10). https://doi.org/10.1061/(asce)mt.1943-5533.0002020

Elango, K. S., Gopi, R., Saravanakumar, R., Rajeshkumar, V., Vivek, D., & Raman, S. V. (2021). Properties of pervious concrete - A state of the art review. Materials Today: Proceedings, 45. https://doi.org/10.1016/j.matpr.2020.10.839

Elizondo-Martínez, E. J., Andrés-Valeri, V. C., Jato-Espino, D., & Rodriguez-Hernandez, J. (2020). Review of porous concrete as multifunctional and sustainable pavement. In Journal of Building Engineering (Vol. 27). https://doi.org/10.1016/j.jobe.2019.100967

Faisal, G. H., Jaeel, A. J., & Al-Gasham, T. S. (2020). BOD and COD reduction using porous concrete pavements. Case Studies in Construction Materials, 13. https://doi.org/10.1016/j.cscm.2020.e00396

Fynnisa, Z., Frida, E., Susilawati, Bukit, N., & Zebua, H. M. (2023). The effect of pressure strength of porous concrete on the addition of natural pahae zeolite as a partial replacement of cement. Journal of Physics: Conference Series, 2672(1). https://doi.org/10.1088/1742-6596/2672/1/012014

Ikotun, B. D., & Ekolu, S. (2010). Strength and durability effect of modified zeolite additive on concrete properties. Construction and Building Materials, 24(5). https://doi.org/10.1016/j.conbuildmat.2009.10.033

Iswarya, G., & Beulah, M. (2021). Use of zeolite and industrial waste materials in high strength concrete - A review. Materials Today: Proceedings, 46. https://doi.org/10.1016/j.matpr.2020.06.329

Leon Raj, J., & Chockalingam, T. (2020). Strength and abrasion characteristics of pervious concrete. Road Materials and Pavement Design, 21(8). https://doi.org/10.1080/14680629.2019.1596828

Li, Y., Mu, J., Wang, Z., Liu, Y., & Du, H. (2021). Numerical simulation on slump test of fresh concrete based on lattice Boltzmann method. Cement and Concrete Composites, 122. https://doi.org/10.1016/j.cemconcomp.2021.104136

Liu, C., Xia, Y., Chen, J., Huang, K., Wang, J., Wang, C., Huang, Z., Wang, X., Rao, C., & Shi, M. (2023). Research and Application Progress of Vegetation Porous Concrete. In Materials (Vol. 16, Issue 21). https://doi.org/10.3390/ma16217039

Martins, J. V., Garcia, D. C. S., Aguilar, M. T. P., & Santos, W. J. (2021). Influence’ study of heterogeneity on concrete sludge waste used as supplementary cementitious material. Construction and Building Materials, 303. https://doi.org/10.1016/j.conbuildmat.2021.124519

Matusiak, J., Przekora, A., & Franus, W. (2023). Zeolites and zeolite imidazolate frameworks on a quest to obtain the ideal biomaterial for biomedical applications: A review. In Materials Today (Vol. 67). https://doi.org/10.1016/j.mattod.2023.06.008

Mijailović, N. R., Nedić Vasiljević, B., Ranković, M., Milanović, V., & Uskoković-Marković, S. (2022). Environmental and Pharmacokinetic Aspects of Zeolite/Pharmaceuticals Systems—Two Facets of Adsorption Ability. In Catalysts (Vol. 12, Issue 8). https://doi.org/10.3390/catal12080837

Milović, T., Šupić, S., Malešev, M., & Radonjanin, V. (2022). The Effects of Natural Zeolite as Fly Ash Alternative on Frost Resistance and Shrinkage of Blended Cement Mortars. Sustainability (Switzerland), 14(5). https://doi.org/10.3390/su14052736

Pereira, M., Carbajo, J., Godinho, L., Ramis, J., & Amado-Mendes, P. (2021). Improving the sound absorption behaviour of porous concrete using embedded resonant structures. Journal of Building Engineering, 35. https://doi.org/10.1016/j.jobe.2020.102015

Roy, N., Sarkar, S., Kuna, K. K., & Ghosh, S. K. (2021). Effect of coarse aggregate mineralogy on micro-texture deterioration and polished stone value. Construction and Building Materials, 296. https://doi.org/10.1016/j.conbuildmat.2021.123716

Schumacher, K., Saßmannshausen, N., Pritzel, C., & Trettin, R. (2020). Lightweight aggregate concrete with an open structure and a porous matrix with an improved ratio of compressive strength to dry density. Construction and Building Materials, 264. https://doi.org/10.1016/j.conbuildmat.2020.120167

Serati-Nouri, H., Jafari, A., Roshangar, L., Dadashpour, M., Pilehvar-Soltanahmadi, Y., & Zarghami, N. (2020). Biomedical applications of zeolite-based materials: A review. In Materials Science and Engineering C (Vol. 116). https://doi.org/10.1016/j.msec.2020.111225

Teymouri, E., Wong, K. S., Tan, Y. Y., & Pauzi, N. N. M. (2023). Mechanical behaviour of adsorbent pervious concrete using iron slag and zeolite as coarse aggregates. Construction and Building Materials, 388. https://doi.org/10.1016/j.conbuildmat.2023.131720

Zhang, Y., Li, H., Abdelhady, A., & Du, H. (2020). Laboratorial investigation on sound absorption property of porous concrete with different mixtures. Construction and Building Materials, 259. https://doi.org/10.1016/j.conbuildmat.2020.120414

Zhang, Y., Li, H., Abdelhady, A., Yang, J., & Wang, H. (2021). Effects of specimen shape and size on the permeability and mechanical properties of porous concrete. Construction and Building Materials, 266. https://doi.org/10.1016/j.conbuildmat.2020.121074

Downloads

Published

2024-08-30

How to Cite

Yudi, A., Yuliyanto, A., Kirtinanda, P., Gerhard, C., & Irawan, E. R. (2024). Pemanfaatan Zeolit dengan Aktivasi Fisik sebagai Bahan Pengganti Semen pada Beton Berpori. Media Teknik Sipil, 22(2), 90–97. https://doi.org/10.22219/jmts.v22i2.34686