Model Tangki-Codeq untuk Transformasi Seri Data Hujan menjadi Aliran Sungai Periode Harian

Authors

  • Sulianto Jurusan Teknik Sipil - Fakultas Teknik - Universitas Muhammadiyah Malang, Indonesia

DOI:

https://doi.org/10.22219/jmts.v22i1.35939

Abstract

Algoritma Codeq merupakan sintesa dari chaotic search, opposition-based learning, diferential evolution dan quantum mechanism. Keandalannya dalam menyelesaikan sistim persamaan non linier dan komplek menjadikan metode ini menarik diterapkan untuk menyelesaikan berbagai masalah optimasi. Penelitian ini mengkaji efektivitas model Tangki-Codeq pada analisis transformasi seri data hujan menjadi seri data aliran periode harian. Model Tangki-Codeq merupakan model dari hasil penggabungan sistim persamaan simulasi model Tangki Sugawara dan metode optimasi parameter berbasis algoritma Codeq. Pengujian model dilakukan di daerah aliran Sungai (DAS) Welang Jawa Timur dengan melibatkan set data amatan periode harian sepanjang 15 tahun, yaitu Tahun 2016 – 2020. Hasil pengujian menunjukkan model Tangki-Codeq mampu mempresentasikan hubungan seri data hujan menjadi data debit Sungai Welang periode harian dengan sangat efektif. Indikator Nash-Sutcliffe Efficiency (NSE) > 0.8 yang dihasilkan dari tahap kalibrasi dan validasi menunjukkan kurva debit luaran model dapat mendekati kurva debit amatan.

Downloads

Download data is not yet available.

Author Biography

Sulianto, Jurusan Teknik Sipil - Fakultas Teknik - Universitas Muhammadiyah Malang, Indonesia

Civil Engineering

References

Darikadeh, D., Akbarpour, A., Pourezza, M.B., Hashemi, S.R. (2014). Automatic calibration for estimation of the parameters of rainfall-runoff model, SCIJOU. Journal of River Engineering. Vol. 2. Iss. 8 pp. 9.

Hsu, P. Y. & Yeh, Y. L. (2015). Study on flood Para-Tank model parameters with particle swarm optimization. Journal of Information Hiding and Multimedia Signal Processing, 6(5), 911–923.

Huang, X.-L. & Xiong, J. (2010). Parameter Optimization of Multi-tank Model with Modified Dynamically Dimensioned Search Algorithm. In Proceedings of the Third International Symposium on Computer Science and Computational Technology (Vol. 14, Issue 5).

Jonsdottir, H., Madsen, H. & Palsson, O. P. (2006). Parameter estimation in stochastic rainfall-runoff models. Journal of Hydrology, 326(1–4), 379–393.https://doi.org/10.1016/j.jhydrol.2005.11.004

Kuok, K. K., Harun, S. & Chiu, P. C. (2011). Comparison of particle swarm optimization and shuffle complex evolution for auto-calibration of hourly tank model’s parameters. International Journal of Advances in Soft Computing and Its Applications, 3(3), 1–17.

Ngoc, T. A., Hiramatsu, K. & Harada, M. (2013). Optimizing Parameters for Two Conceptual Hydrological Models Using a Genetic Algorithm : A Case Study in the Dau Tieng River Watershed , Vietnam. JARQ, 47(1), 85–96.

Omran, M. G. H. & al-Adwani, F. (2010). Using CODEQ to Train Feed-forward Neural Networks. http://arxiv.org/abs/ 1002.0745

Omran, M. G. H. & Salman, A. (2009). Constrained optimization using CODEQ. Chaos, Solitons and Fractals, 42(2), 662–668. https://doi.org/10.1016/ j.chaos.2009.01.039

Omran, M. G. H. & Salman, A. (2010). Improving the performance of CODEQ using quadratic interpolation. ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence, Proceedings, 1, 265–270. https://doi. org/10.5220/0002721702650270

Piotrowski, A. P., Napiorkowski, M. J., Napiorkowski, J. J., Osuch, M. & Kundzewicz, Z. W. (2017). Are modern metaheuristics successful in calibrating simple conceptual rainfall–runoff models? Hydrological Sciences Journal, 62(4), 606–625. https://doi.org/10.1080/ 02626667.2016.1234712

Santos, C. A. G., De MacEdo MacHado Freire, P. K., Mishra, S. K. & Soares, A. (2011). Application of a particle swarm optimization to the tank model. IAHS-AISH Publication, 347(July), 114–120.

Seibert, J. (2000). Multi-criteria caibration of a conceptual runoff model using a genetic algoritm. Hydrology and Earth System Sciences, 4(2), 215–224.

Sulianto. (2020). Effectiveness of Several Metaheuristic Methods to Analyze Hydraulic Parameters in a Drinking Water Distribution Network. World Journal of Engineering and Technology, 08(03), 456–484. https://doi.org/10. 4236/wjet.2020.83034

Zhang, X., Hörmann, G., Fohrer, N. & Gao, J. (2012). Parameter calibration and uncertainty estimation of a simple rainfall-runoff model in two case studies. Journal of Hydroinformatics, 14(4), 1061–1074. https://doi.org/ 10.2166/hydro.2012.084

Zhang, Xuesong, Srinivasan, R., Zhao, K. & Liew, M. Van. (2008). Evaluation of global optimization algorithms for parameter calibration of a computationally intensive hydrologic model. Hydrological Procesess, 22(November 2008), 430–441. https://doi.org/10.1002/hyp

Downloads

Published

2024-02-28

How to Cite

Sulianto. (2024). Model Tangki-Codeq untuk Transformasi Seri Data Hujan menjadi Aliran Sungai Periode Harian. Media Teknik Sipil, 22(1), 1–9. https://doi.org/10.22219/jmts.v22i1.35939