Model Tangki-Codeq untuk Transformasi Seri Data Hujan menjadi Aliran Sungai Periode Harian
DOI:
https://doi.org/10.22219/jmts.v22i1.35939Abstract
Algoritma Codeq merupakan sintesa dari chaotic search, opposition-based learning, diferential evolution dan quantum mechanism. Keandalannya dalam menyelesaikan sistim persamaan non linier dan komplek menjadikan metode ini menarik diterapkan untuk menyelesaikan berbagai masalah optimasi. Penelitian ini mengkaji efektivitas model Tangki-Codeq pada analisis transformasi seri data hujan menjadi seri data aliran periode harian. Model Tangki-Codeq merupakan model dari hasil penggabungan sistim persamaan simulasi model Tangki Sugawara dan metode optimasi parameter berbasis algoritma Codeq. Pengujian model dilakukan di daerah aliran Sungai (DAS) Welang Jawa Timur dengan melibatkan set data amatan periode harian sepanjang 15 tahun, yaitu Tahun 2016 – 2020. Hasil pengujian menunjukkan model Tangki-Codeq mampu mempresentasikan hubungan seri data hujan menjadi data debit Sungai Welang periode harian dengan sangat efektif. Indikator Nash-Sutcliffe Efficiency (NSE) > 0.8 yang dihasilkan dari tahap kalibrasi dan validasi menunjukkan kurva debit luaran model dapat mendekati kurva debit amatan.
Downloads
References
Darikadeh, D., Akbarpour, A., Pourezza, M.B., Hashemi, S.R. (2014). Automatic calibration for estimation of the parameters of rainfall-runoff model, SCIJOU. Journal of River Engineering. Vol. 2. Iss. 8 pp. 9.
Hsu, P. Y. & Yeh, Y. L. (2015). Study on flood Para-Tank model parameters with particle swarm optimization. Journal of Information Hiding and Multimedia Signal Processing, 6(5), 911–923.
Huang, X.-L. & Xiong, J. (2010). Parameter Optimization of Multi-tank Model with Modified Dynamically Dimensioned Search Algorithm. In Proceedings of the Third International Symposium on Computer Science and Computational Technology (Vol. 14, Issue 5).
Jonsdottir, H., Madsen, H. & Palsson, O. P. (2006). Parameter estimation in stochastic rainfall-runoff models. Journal of Hydrology, 326(1–4), 379–393.https://doi.org/10.1016/j.jhydrol.2005.11.004
Kuok, K. K., Harun, S. & Chiu, P. C. (2011). Comparison of particle swarm optimization and shuffle complex evolution for auto-calibration of hourly tank model’s parameters. International Journal of Advances in Soft Computing and Its Applications, 3(3), 1–17.
Ngoc, T. A., Hiramatsu, K. & Harada, M. (2013). Optimizing Parameters for Two Conceptual Hydrological Models Using a Genetic Algorithm : A Case Study in the Dau Tieng River Watershed , Vietnam. JARQ, 47(1), 85–96.
Omran, M. G. H. & al-Adwani, F. (2010). Using CODEQ to Train Feed-forward Neural Networks. http://arxiv.org/abs/ 1002.0745
Omran, M. G. H. & Salman, A. (2009). Constrained optimization using CODEQ. Chaos, Solitons and Fractals, 42(2), 662–668. https://doi.org/10.1016/ j.chaos.2009.01.039
Omran, M. G. H. & Salman, A. (2010). Improving the performance of CODEQ using quadratic interpolation. ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence, Proceedings, 1, 265–270. https://doi. org/10.5220/0002721702650270
Piotrowski, A. P., Napiorkowski, M. J., Napiorkowski, J. J., Osuch, M. & Kundzewicz, Z. W. (2017). Are modern metaheuristics successful in calibrating simple conceptual rainfall–runoff models? Hydrological Sciences Journal, 62(4), 606–625. https://doi.org/10.1080/ 02626667.2016.1234712
Santos, C. A. G., De MacEdo MacHado Freire, P. K., Mishra, S. K. & Soares, A. (2011). Application of a particle swarm optimization to the tank model. IAHS-AISH Publication, 347(July), 114–120.
Seibert, J. (2000). Multi-criteria caibration of a conceptual runoff model using a genetic algoritm. Hydrology and Earth System Sciences, 4(2), 215–224.
Sulianto. (2020). Effectiveness of Several Metaheuristic Methods to Analyze Hydraulic Parameters in a Drinking Water Distribution Network. World Journal of Engineering and Technology, 08(03), 456–484. https://doi.org/10. 4236/wjet.2020.83034
Zhang, X., Hörmann, G., Fohrer, N. & Gao, J. (2012). Parameter calibration and uncertainty estimation of a simple rainfall-runoff model in two case studies. Journal of Hydroinformatics, 14(4), 1061–1074. https://doi.org/ 10.2166/hydro.2012.084
Zhang, Xuesong, Srinivasan, R., Zhao, K. & Liew, M. Van. (2008). Evaluation of global optimization algorithms for parameter calibration of a computationally intensive hydrologic model. Hydrological Procesess, 22(November 2008), 430–441. https://doi.org/10.1002/hyp
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Sulianto
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
MEDIA TEKNIK SIPIL Journal
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.