Red dragon fruit (Hylocereus costaricensis Britt. Et R.) peel extract as a natural dye alternative in microscopic observation of plant tissues: The practical guide in senior high school
DOI:
https://doi.org/10.22219/jpbi.v3i3.4843Keywords:
Natural dye, practical guide, red dragon fruit, staining prepared slideAbstract
Prepared slide of plant tissue needs to be staining to facilitate observations under microscope. Laboratorium activities in schools usually use synthetic dyes which expensive and can be damaged the student. Therefore the exploration of alternative dyes need to be established, such as utilizing of red dragon fruit (Hylocereus castaricensis Britt. Et R.). This study aims to (1) find out the best concentration of dragon fruit peel extract for staining plant tissue prepared slide and (2) to develop the practical guide related to plant tissue observation. The qualitative research used different concentration of red dragon fruit peel extract, namely: 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% with 3 repetitions. Data were obtained from observation photos of prepared slide. The result showed that the most contrast prepared slide was used red dragon fruit extract in 60% concentration. The result use to arrange practical guide in observation of plant tissues which is validated by material expert. The validation result showed “very good” criteria (86.01%).
Downloads
References
Al-Tikritti, S. A., & Walker, F. (1978). Anthocyanin BB: A nuclear stain substitute for haematoxylin. Journal of Clinical Pathology, 31(2), 194–6. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/75891
Avwioro, O. G., Aloamaka, P. C., Ojianya, N. U., Oduola, T., & Ekpo, E. O. (2005). Extracts of Pterocarpus osun as a histological stain for collagen fibres. African Journal of Biotechnology, 4(5), 460–462. Retrieved from http://www. academic journals.org/AJB
Bayazit, Ş. S. (2014). Investigation of Safranin O adsorption on superparamagnetic iron oxide nanoparticles (SPION) and multi-wall carbon nanotube/SPION composites. Desalination and Water Treatment, 52(37–39), 6966–6975. https://doi.org/10.1080/ 19443994.2013.821045
Bhuyan, R., & Saikia, C. N. (2003). Extraction of natural colourants from roots of Morinda angustifolia Roxb. - their identification and studies of dyeing characteristics on wool. Indian Journal of Chemical Technology, 10(2), 131–136.
Chukwu, O. O. C., Odu, C. E., Chukwu, D. I., Hafiz, N., Chidozie, V. N., & Onyimba, I. A. (2011). Application of extracts of Henna (Lawsonia inamis) leaves as a counter stain. African Journal of Microbiology Research, 5(21), 3351–3356. https://doi.org/10.5897/ AJMR10.418
Corleone, J. (2017). Dragon fruit nutrition. Retrieved November 27, 2017, from https:// www.livestrong.com/article/81272-dragon-fruit-nutrition/
Deepak, M. S., & Omman, P. (2013). Use of dye extract of Melastoma malabathricum Linn. for plant anatomical staining. Acta Biologica Indica, 2(2), 456–460. Retrieved from http://www.bioscipub.com/journals/ abi/pdf/456-460.pdf
Deepali, K., Lalitha, S., & Deepika, M. (2014). Application of aqueous plant extracts as biological stains. International Journal of Scientific & Engineering Research, 5(2), 1586–1589.
Egbujo, E. C., Adisa, O. J., & Yahaya, A. B. (2008). A study of the staining effect of roselle (Hibiscus sabdariffa) on the histologic section of the testis. Int. J. Morphol, 26(4), 927–930. Retrieved from http://www.scielo.cl/pdf/ijmorphol/v26n4/art22.pdf
Gresby, A. (2013). Pemanfaatan filtrat daun jati muda (Tectona grandis) sebagai bahan pewarna alternatif pembuatan preparat maserasi batang cincau rambat (Cyclea barbata). Jurnal BioEdu, 2(1).
Jackman, R. L., Yada, R. Y., Tung, M. A., & Speers, R. A. (1987). Anthocyanins as food colorants? A review. Journal of Food Biochemistry, 11(3), 201–247. https://doi. org/10.1111/j.1745-4514.1987.tb00123.x
Kamel, F. H., & Najmaddin, C. (2016). Use of some plants color as alternative stain in staining of bacteria. Kirkuk University Journal /Scientific Studies, 11(3). Retrieved from https://www.iasj.net/iasj?func=fulltext &aId=124660
Kong, J. M., Chia, L. S., Goh, N. K., Chia, T. F., & Brouillard, R. (2003). Analysis and biological activities of anthocyanins. Phytochemistry, 64(5), 923–933. https:// doi.org/10.1016/S0031-9422(03)00438-2
Kumar, N., Mehul, J., Das, B., & Solanki, J. B. (2015). Staining of Platyhelminthes by herbal dyes: An eco-friendly technique for the taxonomist. Veterinary World, 8(11), 1321–1325. https://doi.org/10.14202/vet world.2015.1321-1325
Nurwanti, M., Budiono, D., & Pratiwi, R. (2013). Pemanfaatan filtrat daun muda jati sebagai bahan pewarna alternatif dalam pembuatan preparat jaringan tumbuhan. Jurnal BioEdu, 2(1).
Patil, M. A., & Shinde, J. K. (2016). Adsorption of methylene blue in waste water by low cost adsorbent bentonite soil. International Journal of Engineering Science and Computing, 6(9), 2160–2167.
Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: A review. Journal of Hazardous Materials, 177(1–3), 70–80. https://doi.org/10.1016/J.JHAZMAT. 2009.12.047
Raheem, E. M. A., Ibnouf, A.-A. O., Shingeray, O. H., & Farah, H. J. (2015). Using of Hibiscus sabdariffa extract as a natural histological stain of the skin. American Journal of Research Communication, 3(5), 211–216. Retrieved from https://pdfs. semanticscholar.org/4377/f045635b65f2570e46f132f05766ce802497.pdf
Shehu, S. A., Sonfada, M. L., Danmaigoro, A., Umar, A. A., Hena, S. A., & Wiam, I. M. (2012). Kola nut (Cola acuminata) extract as a substitute to histological tissue stain eosin. Scientific Journal of Veterinary Advances, 1(2), 33–37. Retrieved from http://oer. udusok.edu.ng:8080/xmlui/bitstream/handle/123456789/172/Kola_nut_cola_acuminata_extract_as_a_sub.pdf?sequence=1&isAllowed=y
Siva, R. (2007). Status of natural dyes and dye-yielding plants in India. Current Science, 92(7), 916–925.
Sridhara, S. U., Raju, S., Gopalkrishna, A. H., Haragannavar, V. C., Latha, D., & Mirshad, R. (2016). Hibiscus: A different hue in histopathology. Journal of Medicine Radiology, Pathology & Surgery, 2(21), 9–11. https://doi.org/10. 15713/ins.jmrps.44
Suebkhampet, A., & Naimon, N. (2014). Using Dye plant extract for histological staining. J. Mahanakorn Vet. Med., 9(91), 63–78. Retrieved from http://www.vet.mut.ac.th/ journal_jmvm/article/9-1/6_ article_9-1.pdf
Vutskits, L., Briner, A., Klauser, P., Gascon, E., Dayer, A. G., Kiss, J. Z., Morel, D. R. (2008). Adverse effects of methylene blue on the central nervous system. Anesthesiology, 108(4), 684–692. https:// doi.org/10.1097/ALN.0b013e3181684be4.
Downloads
Published
Issue
Section
License
Authors who publish with JPBI (Jurnal Pendidikan Biologi Indonesia) agree to the following terms:
- For all articles published in JPBI, copyright is retained by the authors. Authors give permission to the publisher to announce the work with conditions. When the manuscript is accepted for publication, the authors agree to automatic transfer of the publishing right to the publisher.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.