Statistical Simmulation of Definite Integral Based on Uppersum and Lowersum Random Partitions using Geogebra

Authors

  • Widiya Astuti Alam Sur Politeknik Negeri Tanah Laut

DOI:

https://doi.org/10.22219/mej.v6i1.18027

Abstract

The aim of this paper is to present the statistical model simmulation about the definite integral concept based on upersum and lowersum random partitions by using geogebra. The random partitions of the uppersum and lowersum in determine the value of definite integral is used to find out the statsitical distribution of its generated random variable. Based on Kolmogorov Smirnov Test, the random variable data of subinterval partitions on uppersum and lowersum by using goegebra followed the certain statistical distribution. The random partitions of uppersum and lowersums followed  Burr 4 parameter, Log-Pearson 3, and  Pearson 6 distributions.

Downloads

Download data is not yet available.

References

Adams, Robert A.; Essex, C. (2010). Calculus Single Variable 7th edition. USA: Pearson.

Arini, F. Y., & Dewi, N. R. (2019). GeoGebraAs a Tool to Enhance Student Ability in Calculus. KnE Social Sciences. https://doi.org/10.18502/kss.v3i18.4714

Bartle, Robert G.; Sherbert, D. R. (2000). Introduction to Real Analysis.

Caligaris, M.Graciela; Schivo, M.Elena; Romiti, M. R. (2014). Calculus & GeoGebra, an Interesting Partnership. Procedia-Social and Behavioral Science, 174(Sakarya University), 1183–1188.

Caligaris, M. G., Schivo, E., & Romiti, M. R. (2015). ScienceDirect Calculus & GeoGebra, an interesting partnership. Procedia - Social and Behavioral Sciences, 174, 1183–1188. https://doi.org/10.1016/j.sbspro.2015.01.735

Geogebra, C. of. (2015). Geogebra Manual The Official Manual of Geogebra. Retrieved from www.geogebra.org

Hohenwarter, M.;Preiner, J.; Yi, T. (2007). Incorporating Geogebra into Teaching MAthematics at The College Level. Proceedings of ICTCM -Geogebra at The College Level, 85–89. Boston.

Kado, ., & Dem, N. (2020). Effectiveness of GeoGebra in Developing the Conceptual Understanding of Definite Integral at Gongzim Ugyen Dorji Central School, in Haa Bhutan. Asian Journal of Education and Social Studies, 60–65. https://doi.org/10.9734/ajess/2020/v10i430276

Milovanović, M., Takači, urica, & Milajić, A. (2011). Multimedia approach in teaching mathematics - example of lesson about the definite integral application for determining an area. International Journal of Mathematical Education in Science and Technology, 42(2), 175–187. https://doi.org/10.1080/0020739X.2010.519800

Nur’aini, I. L., Harahap, E., Badruzzaman, F. H., & Darmawan, D. (2017). Pembelajaran Matematika Geometri Secara Realistis Dengan GeoGebra. Matematika, 16(2). https://doi.org/10.29313/jmtm.v16i2.3900

S, W. A. A. (2018). Eksplorasi Konsep dan Aplikasi Integral Tertentu dengan Sotware Geogebra.

Salas, S.; Hille, E.; Etgen, G. . (2007). Calculus One and Several Variables,10th edition (10th ed.). USA: John Wiley&Sons.

Sari, F. K., Farida, F., & Syazali, M. (2016). Pengembangan Media Pembelajaran (Modul) berbantuan Geogebra Pokok Bahasan Turunan. Al-Jabar : Jurnal Pendidikan Matematika, 7(2), 135–152. https://doi.org/10.24042/ajpm.v7i2.24

Serhan, D. (2015). Students’ Understanding of the Definite Integral Concept. International Journal of Research in Education and Science, 1(1), 84–88.

Stewart, J. (2008). Calculus, 6th Edition (6th ed.). USA: Thomson Brooks/Cole.

Stewart, James. (2010). Calculus Concepts and Contexts. USA: BROOKS/COLE CENGANGE Learning.

Sur, W. A. A. (2020). Mathematical Construction of Definite Integral Concepts by Using GeoGebra. Mathematics Education Journal, 4(1), 37. https://doi.org/10.22219/mej.v4i1.11469

Tatar, E., & Zengin, Y. (2016). Conceptual Understanding of Definite Integral with GeoGebra. Computers in the Schools, 33(2), 120–132. https://doi.org/10.1080/07380569.2016.1177480

Downloads

Published

2022-03-20