Real Business Cycle: Stochastic driving force decomposition of output dynamics in East Java

Authors

  • Mochamad Rofik PhD Student in Economics, Universitas Brawijaya, Indonesia
  • Ayu Dwidyah Rini PhD Student in Economics, Universitas Brawijaya, Indonesia
  • David Kaluge Department of Economics, Universitas Brawijaya, Indonesia
  • Rafael Alfarado Department of Economics, Universidad Nacional de Loja, Ecuador

DOI:

https://doi.org/10.22219/jibe.v7i02.28160

Keywords:

Real Business Cycle, stochastic shock, dynamic output, East Java

Abstract

This study aims to examine output dynamics in East Java using the Real Business Cycle (RBC) model. We constructed an RBC model with two stochastic shocks originating from the demand and supply sides. The RBC model in this study shows that output dynamics, as the driver of the business cycle in East Java, are mostly caused by exogenous shocks originating from the demand side. The model also shows that some variables such as wage levels, consumption, and capital accumulation exhibit inertia patterns in response to shocks. Therefore, after releasing the assumptions underlying the RBC model and accommodating fiscal and monetary policies, we argue that the response time lag shown by some of these variables can be advantageous for authorities to mitigate the impact of shocks and determine policies. Additionally, two main factors that determine policy effectiveness are understanding the sources of shocks and the timing of policy implementation.

Downloads

Download data is not yet available.

References

Ahmed, S., & Murthy, R. (1994). Money, Output, and Real Business Cycles in a Small Open Economy. The Canadian Journal of Economics, 27(4). https://doi.org/10.2307/136195

Amalia, S. K., Santoso, D. B., & Sasongko, S. (2018). Convergence Analysis of Economic Growth in East Java. JEJAK, 11(1). https://doi.org/10.15294/jejak.v11i1.9643

Barro, R. J., & King, R. G. (1984). Time-Separable Preferences and Intertemporal-Substitution Models of Business Cycles. The Quarterly Journal of Economics, 99(4). https://doi.org/10.2307/1883127

Brown, A. J. G., Kohlbrecher, B., Merkl, C., & Snower, D. J. (2021). The effects of productivity and benefits on unemployment: Breaking the link. Economic Modelling, 94. https://doi.org/10.1016/j.econmod.2020.02.037

Brückmann, G., Willibald, F., & Blanco, V. (2021). Battery Electric Vehicle adoption in regions without strong policies. Transportation Research Part D: Transport and Environment, 90. https://doi.org/10.1016/j.trd.2020.102615

Chib, S., & Ramamurthy, S. (2014). DSGE Models with Student-t Errors. Econometric Reviews, 33(1–4). https://doi.org/10.1080/07474938.2013.807152

Christianto, S. Y., Prasetyani, D., & Rawidyo Putr, T. (2022). The Effect of Inflation Rate, Economic Growth Rate and Minimum Wages on Open Unemployment Rate in East Java Year 2013–2021. International Journal of Economics, Business and Management Research, 06(12). https://doi.org/10.51505/ijebmr.2022.61204

Dees, S., Pesaran, M. H., Smith, L. V., & Smith, R. P. (2021). Supply, Demand and Monetary Policy Shocks in a Multi-Country New Keynesian Model. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.1663882

Elly Magdalena Silangen. (1994). Pengaruh modal dan tenaga kerja terhadap pertumbuhan output sektor industri di jawa timur. Universitas Airlangga.

Fernández-Villaverde, J., & Guerrón-Quintana, P. A. (2020). Uncertainty shocks and business cycle research. Review of Economic Dynamics, 37. https://doi.org/10.1016/j.red.2020.06.005

Fu, L., & Ho, C. Y. (2022). Monetary policy surprises and interest rates under China’s evolving monetary policy framework. Emerging Markets Review, 52. https://doi.org/10.1016/j.ememar.2022.100895

Galadima, M. D., & Aminu, A. W. (2019). Shocks effects of macroeconomic variables on natural gas consumption in Nigeria: Structural VAR with sign restrictions. Energy Policy, 125. https://doi.org/10.1016/j.enpol.2018.10.021

Galí, J. (2020). The effects of a money-financed fiscal stimulus. Journal of Monetary Economics, 115. https://doi.org/10.1016/j.jmoneco.2019.08.002

Garthwaite, P. H., Fan, Y., & Sisson, S. A. (2016). Adaptive optimal scaling of Metropolis–Hastings algorithms using the Robbins–Monro process. Communications in Statistics - Theory and Methods, 45(17). https://doi.org/10.1080/03610926.2014.936562

Guo, J.-T., & Janko, Z. (2009). Reexamination of Real Business Cycles in a Small Open Economy. Southern Economic Journal, 76(1). https://doi.org/10.4284/sej.2009.76.1.165

Harvey, A., & Trimbur, T. (2008). Trend Estimation and the Hodrick-Prescott Filter. JOURNAL OF THE JAPAN STATISTICAL SOCIETY, 38(1). https://doi.org/10.14490/jjss.38.41

Herbst, E., & Schorfheide, F. (2014). Sequential monte carlo sampling for dsge models. Journal of Applied Econometrics, 29(7). https://doi.org/10.1002/jae.2397

Hoffmann, V., & Jones, K. (2021). Improving food safety on the farm: Experimental evidence from Kenya on incentives and subsidies for technology adoption. World Development, 143. https://doi.org/10.1016/j.worlddev.2021.105406

Jaroensathapornkul, J. (2020). Impacts of technological shock on the agricultural business cycle. Jurnal Ekonomi Malaysia, 54(1). https://doi.org/10.17576/JEM-2020-5401-1

Jawadi, F., Ameur, H. Ben, Bigou, S., & Flageollet, A. (2022). Does the Real Business Cycle Help Forecast the Financial Cycle? Computational Economics, 60(4). https://doi.org/10.1007/s10614-021-10193-8

Li, T., Li, X., & Liao, G. (2022). Business cycles and energy intensity. Evidence from emerging economies. Borsa Istanbul Review, 22(3). https://doi.org/10.1016/j.bir.2021.07.005

Mehrotra, A., & Moessner, R. (2023). Macroprudential policy and interest rate spillovers. Applied Economics Letters, 30(1). https://doi.org/10.1080/13504851.2021.1975025

Mountford, A., & Harald, U. (2009). What are the effects of fiscal policy shocks? Journal of Applied Econometrics, 24(6). https://doi.org/10.1002/jae.1079

Ocampo, J. A., & Ojeda-Joya, J. (2022). Supply shocks and monetary policy responses in emerging economies. Latin American Journal of Central Banking, 3(4). https://doi.org/10.1016/j.latcb.2022.100071

Pham, B. T., & Sala, H. (2020). The macroeconomic effects of oil price shocks on Vietnam: Evidence from an over-identifying SVAR analysis. Journal of International Trade and Economic Development, 29(8). https://doi.org/10.1080/09638199.2020.1762710

Plosser, C. I. (1989). Understanding Real Business Cycles. Journal of Economic Perspectives, 3(3). https://doi.org/10.1257/jep.3.3.51

Prescott, E. C., & Kydland, F. E. (1990). Business Cycles: Real Facts and a Monetary Myth. Quarterly Review, 14(2). https://doi.org/10.21034/qr.1421

Qurrata, V. A., & Ramadhani, N. (2021). The Impact of HDI, Minimum Wages, Investment and GRDP on Poverty in East Java in 2019. KnE Social Sciences. https://doi.org/10.18502/kss.v5i8.9393

Rebelo, S. (2010). Real business cycle models: Past, present, and future. Voprosy Ekonomiki, 2010(10). https://doi.org/10.32609/0042-8736-2010-10-56-67

Resosudarmo, B. P., Abdurohman, Yusuf, A. A., & Hartono, D. (2021). Spatial impacts of fiscal stimulus policies during the 2009 global financial crisis in Indonesia. Asia-Pacific Journal of Regional Science, 5(1). https://doi.org/10.1007/s41685-020-00176-2

Romer, D. (2015). ADVANCED MACROECONOMICS Fourth Edition. In Syria Studies (Vol. 7, Issue 1).

Sakarya, N., & de Jong, R. M. (2022). The spectral analysis of the Hodrick–Prescott filter. In Journal of Time Series Analysis (Vol. 43, Issue 3). https://doi.org/10.1111/jtsa.12622

Sujeetha Jegajeevan. (2016). Understanding Sri Lankan Business Cycles through an estimated DSGE Model. 9th International Research Conference (2016), Central Bank of Sri Lanka, Colombo.

Susilo, J. H., Tsani, L. I., Herianto, H., & Kholilurrohman, M. (2020). Econometrics Model of Economic Growth in East Java Province with Dynamic Panel Data through Generalized Method of Moment (GMM) Approach. Ekuilibrium : Jurnal Ilmiah Bidang Ilmu Ekonomi, 15(1). https://doi.org/10.24269/ekuilibrium.v15i1.2372

Tervala, J., & Watson, T. (2022). Hysteresis and fiscal stimulus in a recession. Journal of International Money and Finance, 124. https://doi.org/10.1016/j.jimonfin.2022.102614

Vinajera-Zamora, A., Marrero-Delgado, F., & Coello-Machado, N. (2014). The added value calculation in a manufacturing supply chain. an application in an electric power meter (127v) supply chain. Proceedings of 7th International Doctoral Students Workshop on Logistics, September.

Yusuf Dauda, S., & Lee, J. (2015). Technology adoption: A conjoint analysis of consumers’ preference on future online banking services. Information Systems, 53, 1–15. https://doi.org/10.1016/j.is.2015.04.006

Zulkarnain, R. (2022). Flash Estimates of Household Final Consumption Expenditure in East Java. East Java Economic Journal, 6(1). https://doi.org/10.53572/ejavec.v6i1.84

Downloads

Published

2023-11-30