Tweeting the economy: Analyzing social media sentiments and macroeconomic indicators
DOI:
https://doi.org/10.22219/jibe.v7i02.28227Keywords:
Social media, sentiment, Consumer Confidence Index, Gross Domestic ProductAbstract
This research aims to examine the correlation between social media sentiment and the Consumer Confidence Index (CCI) as well as Gross Domestic Product (GDP) in Indonesia. Data were collected through web scraping from Twitter (now also known as X) spanning from 2019 to 2022 on a monthly basis. Using Pearson and Kendall’s Tau correlation tests, the study found that the correlation between Twitter sentiment and the CCI is not significant. However, there is a significant correlation between Twitter sentiment from news accounts and GDP The findings indicate that the views and perceptions expressed in social media sentiment, particularly from news accounts on Twitter, could serve as an initial indicator of Indonesia's GDP.
Downloads
References
Abbas, A. F., Jusoh, A., Mas’od, A., Alsharif, A. H., & Ali, J. (2022). Bibliometrix analysis of information sharing in social media. Cogent Business and Management, 9(1), 1–23. https://doi.org/10.1080/23311975.2021.2016556
Andiojaya, A., Nefriana, R. R., Rizka, R., & Lestari, T. K. (2022). GRDP forecasting through night-time light data: Evidence from Indonesia. Jurnal Inovasi Ekonomi, 8(01). https://doi.org/10.22219/jiko.v8i01.20239
Ayaa, M. M., Peprah, W. K., Mensah, M. O., Owusu-Sekyere, A. B., & Daniel, B. (2022). Influence of Heuristic Techniques and Biases in Investment Decision-Making: A Conceptual Analysis and Directions for Future Research. International Journal of Academic Research in Business and Social Sciences, 12(5), 1–17. https://doi.org/10.6007/ijarbss/v12-i5/13339
Bougherara, D., Friesen, L., & Nauges, C. (2021). Risk Taking with Left- and Right-Skewed Lotteries. Journal of Risk and Uncertainty, 62(1), 89–112. https://doi.org/10.1007/s11166-021-09345-w
Chu, S. C., & Chen, H. T. (2019). Impact of consumers’ corporate social responsibility-related activities in social media on brand attitude, electronic word-of-mouth intention, and purchase intention: A study of Chinese consumer behavior. Journal of Consumer Behaviour, 18(6), 453–462. https://doi.org/10.1002/cb.1784
Chwialkowska, A. (2019). How sustainability influencers drive green lifestyle adoption on social media: The process of green lifestyle explained through the lenses of the minority influence model and social learning theory. Management of Sustainable Development Sibiu, 11(1), 33–42. https://doi.org/10.2478/msd-2019-0019
Conrad, F. G., Gagnon-Bartsch, J. A., Ferg, R. A., Schober, M. F., Pasek, J., & Hou, E. (2019). Social Media as an Alternative to Surveys of Opinions About the Economy. Social Science Computer Review, 39(4), 489–508. https://doi.org/10.1177/0894439319875692
de Bruijn, E. J., & Antonides, G. (2022). Poverty and economic decision making: a review of scarcity theory. In Theory and Decision (Vol. 92, Issue 1). Springer US. https://doi.org/10.1007/s11238-021-09802-7
Domalewska, D. (2021). An analysis of COVID-19 economic measures and attitudes: evidence from social media mining. Journal of Big Data, 8(1), 1–14. https://doi.org/10.1186/s40537-021-00431-z
Gan, B., Alexeev, V., Bird, R., & Yeung, D. (2020). Sensitivity to sentiment: News vs social media. International Review of Financial Analysis, 67(1), 1–72. https://doi.org/10.1016/j.irfa.2019.101390
Guenich, H., Hamdi, K., & Chouaibi, N. (2022). Asymmetric response of Investor sentiment to Economic Policy Uncertainty, interest rates and oil price uncertainty: Evidence from OECD countries. Cogent Economics & Finance, 10(1), 2151113. https://doi.org/10.1080/23322039.2022.2151113
Guo, D., Zheng, Y., Wang, W., Hu, P.-N., Yang, Z., & Chen, Z. (2023). The impact of different sentiment in investment decisions: evidence from China’s stock markets IPOs. Economic Research-Ekonomska Istraživanja, 36(1), 2113739. https://doi.org/10.1080/1331677X.2022.2113739
Hirata, E., & Matsuda, T. (2023). Examining logistics developments in post-pandemic Japan through sentiment analysis of Twitter data. Asian Transport Studies, 9(1), 1–7. https://doi.org/10.1016/j.eastsj.2023.100110
Ilhamalimy, R., Ridho, & Ali, H. (2021). Model Perceived Risk and Trust: E-Wom and Purchase Intention (the Role of Trust Mediating in Online Shopping in Shopee Indonesia). Dinasti International Journal of Digital Business Management, 2(2), 204–221. https://doi.org/10.31933/dijdbm.v2i2.651
Jabeen, A., Yasir, M., Ansari, Y., Yasmin, S., Moon, J., & Rho, S. (2022). An Empirical Study of Macroeconomic Factors and Stock Returns in the Context of Economic Uncertainty News Sentiment Using Machine Learning. Complexity, 1(1), 1–18. https://doi.org/10.1155/2022/4646733
Jain, P. K., Pamula, R., & Srivastava, G. (2021). A systematic literature review on machine learning applications for consumer sentiment analysis using online reviews. Computer Science Review, 41(1), 1–17. https://doi.org/10.1016/j.cosrev.2021.100413
Kahneman, D., & Tversky, A. (2018). Prospect theory: An analysis of decision under risk. In Experiments in Environmental Economics (Vol. 1). https://doi.org/10.2307/1914185
Kendall, M. G. (1938). A New Measure of Rank Correlation. Biometrika, 30(1/2), 81–93. https://doi.org/10.2307/2332226
Khosravi, M., Duti, B. M., Yazdan, M. M. S., Ghoochani, S., Nazemi, N., & Shabanian, H. (2023). Multivariate Multi-Step Long Short-Term Memory Neural Network for Simultaneous Stream-Water Variable Prediction. MDPI: Eng, 4(3), 1933–1950. https://doi.org/10.3390/eng4030109
Lee, D. K. (2020). Data transformation: A focus on the interpretation. Korean Journal of Anesthesiology, 73(6), 503–508. https://doi.org/10.4097/kja.20137
Li, J., Wang, Y., & Liu, C. (2022). Spatial Effect of Market Sentiment on Housing Price: Evidence From Social Media Data in China. International Journal of Strategic Property Management, 26(1), 72–85. https://doi.org/10.3846/ijspm.2022.16255
Liu, Q., Lee, W. S., Huang, M., & Wu, Q. (2023). Synergy between stock prices and investor sentiment in social media. Borsa Istanbul Review, 23(1), 76–92. https://doi.org/10.1016/j.bir.2022.09.006
López-Cabarcos, M. Á., Pérez-Pico, A. M., Vázquez-Rodríguez, P., & López-Pérez, M. L. (2020). Investor sentiment in the theoretical field of behavioural finance. Economic Research-Ekonomska Istraživanja, 33(1), 2101–2119. https://doi.org/10.1080/1331677X.2018.1559748
Lou, C., Tan, S. S., & Chen, X. (2019). Investigating Consumer Engagement with Influencer- vs. Brand-Promoted Ads: The Roles of Source and Disclosure. Journal of Interactive Advertising, 19(3), 169–186. https://doi.org/10.1080/15252019.2019.1667928
Nia, Z. M., Ahmadi, A., Bragazzi, N. L., Woldegerima, W. A., Mellado, B., Wu, J., Orbinski, J., Asgary, A., & Kong, J. D. (2022). A cross-country analysis of macroeconomic responses to COVID-19 pandemic using Twitter sentiments. PLoS ONE, 17(8 August), 1–16. https://doi.org/10.1371/journal.pone.0272208
O’Connor, B., Balasubramanyan, R., Routledge, B. R., & Smith, N. A. (2010). From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series. Proceedings of Fourth International AAAI Conference on Weblogs and Social Media, 122–129.
Ortega-Bastida, J., Gallego, A. J., Rico-Juan, J. R., & Albarrán, P. (2021). A multimodal approach for regional GDP prediction using social media activity and historical information. Applied Soft Computing, 111(1), 107693. https://doi.org/10.1016/j.asoc.2021.107693
Pearson, K. (1896). VII. Mathematical contributions to the theory of evolution.—III. Regression, heredity, and panmixia. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 187, 253–318. https://doi.org/10.1098/rsta.1896.0007
Primananda, P. G. B. N., Yasa, N. N. K., Sukaatmadja, I. P. G., & Setiawan, P. Y. (2022). Trust as a mediating effect of social media marketing, experience, destination image on revisit intention in the COVID-19 era. International Journal of Data and Network Science, 6(2), 517–526. https://doi.org/10.5267/j.ijdns.2021.12.002
Sampietro, A., & Salmerón, L. (2021). Incivility in online news and Twitter: effects on attitudes toward scientific topics when reading in a second language. Language Sciences, 85, 101385. https://doi.org/10.1016/j.langsci.2021.101385
Shayaa, S., Ainin, S., Jaafar, N. I., Zakaria, S. B., Phoong, S. W., Yeong, W. C., Al-Garadi, M. A., Muhammad, A., & Zahid Piprani, A. (2018). Linking consumer confidence index and social media sentiment analysis. Cogent Business and Management, 5(1), 1–12. https://doi.org/10.1080/23311975.2018.1509424
Thompson, S. (2018). The Role of Social Media in Shaping Public Opinion. Social Media and Society, 4(2), 1–10. https://doi.org/10.61100/tacit.v1i1.37
Tiep, N. C., Wang, M., Mohsin, M., Kamran, H. W., & Yazdi, F. A. (2021). An assessment of power sector reforms and utility performance to strengthen consumer self-confidence towards private investment. Economic Analysis and Policy, 69(1), 676–689. https://doi.org/10.1016/j.eap.2021.01.005
van den Heuvel, E., & Zhan, Z. (2022). Myths About Linear and Monotonic Associations: Pearson’s r, Spearman’s ρ, and Kendall’s τ. American Statistician, 76(1), 44–52. https://doi.org/10.1080/00031305.2021.2004922
Vlaev, I., King, D., Darzi, A., & Dolan, P. (2019). Changing health behaviors using financial incentives: A review from behavioral economics. BMC Public Health, 19(1), 1–9. https://doi.org/10.1186/s12889-019-7407-8
Walsh, J. P. (2020). Social media and border security: Twitter use by migration policing agencies. Policing and Society, 30(10), 1138–1156. https://doi.org/10.1080/10439463.2019.1666846
Xiang, X. (2022). Investor sentiment, R&D spending and firm performance. Economic Research-Ekonomska Istraživanja, 35(1), 6257–6278. https://doi.org/10.1080/1331677X.2022.2048193
Yarış, A., & Aykol, Ş. (2022). The impact of social media use on restaurant choice. Anatolia, 33(3), 310–322. https://doi.org/10.1080/13032917.2021.1931379
Yu, W., Han, X., Ding, L., & He, M. (2021). Organic food corporate image and customer co-developing behavior: The mediating role of consumer trust and purchase intention. Journal of Retailing and Consumer Services, 59(1), 1–10. https://doi.org/10.1016/j.jretconser.2020.102377
Zielonka, P., & Szymanek, K. (2023). Unraveling Economic Choices. a Historical Perspective on the Intersection of Decision Science and Behavioral Economics. Orbis Idearum, 11(1), 33–56. https://ruj.uj.edu.pl/xmlui/bitstream/handle/item/317808/zielonka_szymanek_unraveling_economic_choices_2023.pdf?sequence=1&isAllowed=y
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Insi Fitriani, Anna Amalyah Agus
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.