Tweeting the economy: Analyzing social media sentiments and macroeconomic indicators

Authors

  • Insi Fitriani Management Department, Faculty of Economics and Business, Universitas Indonesia, Indonesia
  • Anna Amalyah Agus Management Department, Faculty of Economics and Business, Universitas Indonesia, Indonesia

DOI:

https://doi.org/10.22219/jibe.v7i02.28227

Keywords:

Social media, sentiment, Consumer Confidence Index, Gross Domestic Product

Abstract

This research aims to examine the correlation between social media sentiment and the Consumer Confidence Index (CCI) as well as Gross Domestic Product (GDP) in Indonesia. Data were collected through web scraping from Twitter (now also known as X) spanning from 2019 to 2022 on a monthly basis. Using Pearson and Kendall’s Tau correlation tests, the study found that the correlation between Twitter sentiment and the CCI is not significant. However, there is a significant correlation between Twitter sentiment from news accounts and GDP The findings indicate that the views and perceptions expressed in social media sentiment, particularly from news accounts on Twitter, could serve as an initial indicator of Indonesia's GDP.

Downloads

Download data is not yet available.

References

Abbas, A. F., Jusoh, A., Mas’od, A., Alsharif, A. H., & Ali, J. (2022). Bibliometrix analysis of information sharing in social media. Cogent Business and Management, 9(1), 1–23. https://doi.org/10.1080/23311975.2021.2016556

Andiojaya, A., Nefriana, R. R., Rizka, R., & Lestari, T. K. (2022). GRDP forecasting through night-time light data: Evidence from Indonesia. Jurnal Inovasi Ekonomi, 8(01). https://doi.org/10.22219/jiko.v8i01.20239

Ayaa, M. M., Peprah, W. K., Mensah, M. O., Owusu-Sekyere, A. B., & Daniel, B. (2022). Influence of Heuristic Techniques and Biases in Investment Decision-Making: A Conceptual Analysis and Directions for Future Research. International Journal of Academic Research in Business and Social Sciences, 12(5), 1–17. https://doi.org/10.6007/ijarbss/v12-i5/13339

Bougherara, D., Friesen, L., & Nauges, C. (2021). Risk Taking with Left- and Right-Skewed Lotteries. Journal of Risk and Uncertainty, 62(1), 89–112. https://doi.org/10.1007/s11166-021-09345-w

Chu, S. C., & Chen, H. T. (2019). Impact of consumers’ corporate social responsibility-related activities in social media on brand attitude, electronic word-of-mouth intention, and purchase intention: A study of Chinese consumer behavior. Journal of Consumer Behaviour, 18(6), 453–462. https://doi.org/10.1002/cb.1784

Chwialkowska, A. (2019). How sustainability influencers drive green lifestyle adoption on social media: The process of green lifestyle explained through the lenses of the minority influence model and social learning theory. Management of Sustainable Development Sibiu, 11(1), 33–42. https://doi.org/10.2478/msd-2019-0019

Conrad, F. G., Gagnon-Bartsch, J. A., Ferg, R. A., Schober, M. F., Pasek, J., & Hou, E. (2019). Social Media as an Alternative to Surveys of Opinions About the Economy. Social Science Computer Review, 39(4), 489–508. https://doi.org/10.1177/0894439319875692

de Bruijn, E. J., & Antonides, G. (2022). Poverty and economic decision making: a review of scarcity theory. In Theory and Decision (Vol. 92, Issue 1). Springer US. https://doi.org/10.1007/s11238-021-09802-7

Domalewska, D. (2021). An analysis of COVID-19 economic measures and attitudes: evidence from social media mining. Journal of Big Data, 8(1), 1–14. https://doi.org/10.1186/s40537-021-00431-z

Gan, B., Alexeev, V., Bird, R., & Yeung, D. (2020). Sensitivity to sentiment: News vs social media. International Review of Financial Analysis, 67(1), 1–72. https://doi.org/10.1016/j.irfa.2019.101390

Guenich, H., Hamdi, K., & Chouaibi, N. (2022). Asymmetric response of Investor sentiment to Economic Policy Uncertainty, interest rates and oil price uncertainty: Evidence from OECD countries. Cogent Economics & Finance, 10(1), 2151113. https://doi.org/10.1080/23322039.2022.2151113

Guo, D., Zheng, Y., Wang, W., Hu, P.-N., Yang, Z., & Chen, Z. (2023). The impact of different sentiment in investment decisions: evidence from China’s stock markets IPOs. Economic Research-Ekonomska Istraživanja, 36(1), 2113739. https://doi.org/10.1080/1331677X.2022.2113739

Hirata, E., & Matsuda, T. (2023). Examining logistics developments in post-pandemic Japan through sentiment analysis of Twitter data. Asian Transport Studies, 9(1), 1–7. https://doi.org/10.1016/j.eastsj.2023.100110

Ilhamalimy, R., Ridho, & Ali, H. (2021). Model Perceived Risk and Trust: E-Wom and Purchase Intention (the Role of Trust Mediating in Online Shopping in Shopee Indonesia). Dinasti International Journal of Digital Business Management, 2(2), 204–221. https://doi.org/10.31933/dijdbm.v2i2.651

Jabeen, A., Yasir, M., Ansari, Y., Yasmin, S., Moon, J., & Rho, S. (2022). An Empirical Study of Macroeconomic Factors and Stock Returns in the Context of Economic Uncertainty News Sentiment Using Machine Learning. Complexity, 1(1), 1–18. https://doi.org/10.1155/2022/4646733

Jain, P. K., Pamula, R., & Srivastava, G. (2021). A systematic literature review on machine learning applications for consumer sentiment analysis using online reviews. Computer Science Review, 41(1), 1–17. https://doi.org/10.1016/j.cosrev.2021.100413

Kahneman, D., & Tversky, A. (2018). Prospect theory: An analysis of decision under risk. In Experiments in Environmental Economics (Vol. 1). https://doi.org/10.2307/1914185

Kendall, M. G. (1938). A New Measure of Rank Correlation. Biometrika, 30(1/2), 81–93. https://doi.org/10.2307/2332226

Khosravi, M., Duti, B. M., Yazdan, M. M. S., Ghoochani, S., Nazemi, N., & Shabanian, H. (2023). Multivariate Multi-Step Long Short-Term Memory Neural Network for Simultaneous Stream-Water Variable Prediction. MDPI: Eng, 4(3), 1933–1950. https://doi.org/10.3390/eng4030109

Lee, D. K. (2020). Data transformation: A focus on the interpretation. Korean Journal of Anesthesiology, 73(6), 503–508. https://doi.org/10.4097/kja.20137

Li, J., Wang, Y., & Liu, C. (2022). Spatial Effect of Market Sentiment on Housing Price: Evidence From Social Media Data in China. International Journal of Strategic Property Management, 26(1), 72–85. https://doi.org/10.3846/ijspm.2022.16255

Liu, Q., Lee, W. S., Huang, M., & Wu, Q. (2023). Synergy between stock prices and investor sentiment in social media. Borsa Istanbul Review, 23(1), 76–92. https://doi.org/10.1016/j.bir.2022.09.006

López-Cabarcos, M. Á., Pérez-Pico, A. M., Vázquez-Rodríguez, P., & López-Pérez, M. L. (2020). Investor sentiment in the theoretical field of behavioural finance. Economic Research-Ekonomska Istraživanja, 33(1), 2101–2119. https://doi.org/10.1080/1331677X.2018.1559748

Lou, C., Tan, S. S., & Chen, X. (2019). Investigating Consumer Engagement with Influencer- vs. Brand-Promoted Ads: The Roles of Source and Disclosure. Journal of Interactive Advertising, 19(3), 169–186. https://doi.org/10.1080/15252019.2019.1667928

Nia, Z. M., Ahmadi, A., Bragazzi, N. L., Woldegerima, W. A., Mellado, B., Wu, J., Orbinski, J., Asgary, A., & Kong, J. D. (2022). A cross-country analysis of macroeconomic responses to COVID-19 pandemic using Twitter sentiments. PLoS ONE, 17(8 August), 1–16. https://doi.org/10.1371/journal.pone.0272208

O’Connor, B., Balasubramanyan, R., Routledge, B. R., & Smith, N. A. (2010). From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series. Proceedings of Fourth International AAAI Conference on Weblogs and Social Media, 122–129.

Ortega-Bastida, J., Gallego, A. J., Rico-Juan, J. R., & Albarrán, P. (2021). A multimodal approach for regional GDP prediction using social media activity and historical information. Applied Soft Computing, 111(1), 107693. https://doi.org/10.1016/j.asoc.2021.107693

Pearson, K. (1896). VII. Mathematical contributions to the theory of evolution.—III. Regression, heredity, and panmixia. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 187, 253–318. https://doi.org/10.1098/rsta.1896.0007

Primananda, P. G. B. N., Yasa, N. N. K., Sukaatmadja, I. P. G., & Setiawan, P. Y. (2022). Trust as a mediating effect of social media marketing, experience, destination image on revisit intention in the COVID-19 era. International Journal of Data and Network Science, 6(2), 517–526. https://doi.org/10.5267/j.ijdns.2021.12.002

Sampietro, A., & Salmerón, L. (2021). Incivility in online news and Twitter: effects on attitudes toward scientific topics when reading in a second language. Language Sciences, 85, 101385. https://doi.org/10.1016/j.langsci.2021.101385

Shayaa, S., Ainin, S., Jaafar, N. I., Zakaria, S. B., Phoong, S. W., Yeong, W. C., Al-Garadi, M. A., Muhammad, A., & Zahid Piprani, A. (2018). Linking consumer confidence index and social media sentiment analysis. Cogent Business and Management, 5(1), 1–12. https://doi.org/10.1080/23311975.2018.1509424

Thompson, S. (2018). The Role of Social Media in Shaping Public Opinion. Social Media and Society, 4(2), 1–10. https://doi.org/10.61100/tacit.v1i1.37

Tiep, N. C., Wang, M., Mohsin, M., Kamran, H. W., & Yazdi, F. A. (2021). An assessment of power sector reforms and utility performance to strengthen consumer self-confidence towards private investment. Economic Analysis and Policy, 69(1), 676–689. https://doi.org/10.1016/j.eap.2021.01.005

van den Heuvel, E., & Zhan, Z. (2022). Myths About Linear and Monotonic Associations: Pearson’s r, Spearman’s ρ, and Kendall’s τ. American Statistician, 76(1), 44–52. https://doi.org/10.1080/00031305.2021.2004922

Vlaev, I., King, D., Darzi, A., & Dolan, P. (2019). Changing health behaviors using financial incentives: A review from behavioral economics. BMC Public Health, 19(1), 1–9. https://doi.org/10.1186/s12889-019-7407-8

Walsh, J. P. (2020). Social media and border security: Twitter use by migration policing agencies. Policing and Society, 30(10), 1138–1156. https://doi.org/10.1080/10439463.2019.1666846

Xiang, X. (2022). Investor sentiment, R&D spending and firm performance. Economic Research-Ekonomska Istraživanja, 35(1), 6257–6278. https://doi.org/10.1080/1331677X.2022.2048193

Yarış, A., & Aykol, Ş. (2022). The impact of social media use on restaurant choice. Anatolia, 33(3), 310–322. https://doi.org/10.1080/13032917.2021.1931379

Yu, W., Han, X., Ding, L., & He, M. (2021). Organic food corporate image and customer co-developing behavior: The mediating role of consumer trust and purchase intention. Journal of Retailing and Consumer Services, 59(1), 1–10. https://doi.org/10.1016/j.jretconser.2020.102377

Zielonka, P., & Szymanek, K. (2023). Unraveling Economic Choices. a Historical Perspective on the Intersection of Decision Science and Behavioral Economics. Orbis Idearum, 11(1), 33–56. https://ruj.uj.edu.pl/xmlui/bitstream/handle/item/317808/zielonka_szymanek_unraveling_economic_choices_2023.pdf?sequence=1&isAllowed=y

Downloads

Published

2023-11-30