Adaptation of the Indonesian version of the online cognition scale to measure problematic internet use

Authors

  • Dhia Ulfah Purwati Faculty of Psychology, University of Padjadjaran, Indonesia
  • Hanifah Hanifah Faculty of Psychology, University of Padjadjaran, Indonesia

DOI:

https://doi.org/10.22219/jipt.v12i1.28194

Keywords:

Internet use, problematic internet use, scale adaptation

Abstract

The internet can make everyday life more accessible; however, it can also cause problematic behavior. It is essential to prevent the negative impact of problematic internet use on daily activities, whether in educational settings, work, social life, or general functioning. This research aims to adapt the Online Cognition Scale (OCS) to the Indonesian language. The number of samples involved in this research was 195 people between the ages of 18-25 years old. This study tested the psychometric properties through content validity tests and obtained S-CVI/Ave results of 0.92 The CFA model fit test index results are within the acceptable value for all goodness of fit indices, with factor loadings between 0.752 - 0.912 for each dimension and 0.318 - 0.882 for each item. There is one invalid item that is eliminated in the Indonesian version of OCS. The coefficient is 1.057, and the coefficient for the four dimensions ranges from 0.770 to 0.878. The coefficient for the four dimensions also moves from 0.792 to 0.881, and the item-total correlation correction test is within the range of 0.427 - 0.702. This measuring tool is used to get an overview of problematic internet usage behavior in Indonesia.

Downloads

Download data is not yet available.

References

Agbaria, Q. (2022). Cognitive behavioral intervention in dealing with Internet addiction among Arab teenagers in Israel. International Journal of Mental Health and Addiction, 0123456789. https://doi.org/10.1007/s11469-021-00733-6

Andangsari, E. W., Djunaidi, A., Fitriana, E., & Harding, D. (2019). Indonesia Problematic Internet Use Scale. Journal of Physics: Conference Series, 1175(1). https://doi.org/10.1088/1742-6596/1175/1/012239

APJII. (2022). Internet survey report APJII 2021 – 2022. Association of Indonesian Internet Service Providers.https://apjii.or.id/survei

Brown, T. (2015). textit{Confirmatory factor analysis for applied research second edition}. The Guilford Press.

Byrne, B.,& Campbell, T. (1999). Cross-cultural comparisons and the presumption of equivalent measurement and theoretical structure: A look beneath the surface. Journal of Cross-Cultural Psychology, 30(5), 555–574.

Baumgartner, H.,& Homburg, C. (1996). Applications of structural equation modeling in marketing and consumer research: A review. International Journal of Research in Marketing, 13(2), 139–161. https://doi.org/https://doi.org/10.1016/0167-8116(95)00038-0

Bishop, D. I.,& Hertenstein, M. J. (2004). A confirmatory factor analysis of the structure of temperament questionnaire. Educational and Psychological Measurement, 64(6), 1019–1029. https://doi.org/10.1177/0013164404264843

Bernardi, S., & Pallanti, S. (2009). Internet addiction: a descriptive clinical study focusing on comorbidities and dissociative symptoms. Comprehensive Psychiatry, 50(6), 510–516. https://doi.org/10.1016/j.comppsych.2008.11.011

Bettmann, J. E., Anstadt, G., Casselman, B., & Ganesh, K. (2021). Young Adult Depression and Anxiety Linked to Social Media Use: Assessment and Treatment. Clinical Social Work Journal, 49(3), 368–379. https://doi.org/10.1007/s10615-020-00752-1

Błachnio, A., Przepiórka, A., & Hawi, N. S. (2015). Exploring the Online Cognition Scale in a Polish sample. Computers in Human Behavior, 51, 470–475. https://doi.org/10.1016/j.chb.2015.05.028

Chinn, W. (1998). The partial least squares approach to structural equation modelling. Modern Methods for Business Research (295-336). Lawrence Erlbaum Associates Publishers.

Caplan, S. E. (2002). Problematic internet use and psychosocial well-being: Development of a theory-based cognitive–behavioral measurement instrument. Computers in Human Behavior, 18(5), 553–575. https://doi.org/ttps://doi.org/10.1016/S0747-5632(02)00004-3

Caplan, S. E. (2010). Theory and measurement of generalized problematic Internet use: A two-step approach. Computers in Human Behavior, 26(5), 1089–1097. https://doi.org/10.1016/j.chb.2010.03.012

Casale, S., Primi, C., & Fioravanti, G. (2016). Generalized Problematic Internet Use Scale 2: update on the psychometric properties among Italian young adults. The Psychology of Social Networking Vol.2, 202–216. https://doi.org/10.1515/9783110473858-016

Chao, C. M., Kao, K. Y., & Yu, T. K. (2020). Reactions to Problematic Internet Use Among Adolescents: Inappropriate Physical and Mental Health Perspectives. Frontiers in Psychology, 11. https://doi.org/10.3389/fpsyg.2020.01782

Costa, R. M., Patrão, I., & Machado, M. (2019). Problematic internet use and feelings of loneliness. International Journal of Psychiatry in Clinical Practice, 23(2), 160–162. https://doi.org/10.1080/13651501.2018.1539180

DiStefano, C., Zhu, M.,& Mîndrilă, D. (2009). Understanding and using factor scores: Considerations for the applied researcher. Practical Assessment, Research & Evaluation, 14(20), 1–11. https://doi.org/10.7275/da8t-4g52

Davis, L. (1992). Instrument review: Getting the most from your panel of experts. Applied Nursing Research, 5, 194–197. https://doi.org/10.1016/S0897-1897(05)80008-4

Determination and quantification of content validity index. Nursing Research, 35, 382–386. https://doi.org/https://doi.org/10.1097/00006199-198611000-00017

Davis, R. A. (2001). Cognitive-behavioral model of pathological Internet use. Computers in Human Behavior, 17(2), 187–195. https://doi.org/10.1016/S0747-5632(00)00041-8

Davis, R. A., Flett, G. L., & Besser, A. (2002). Validation of a new scale for measuring problematic internet use: Implications for pre-employment screening. Cyberpsychology and Behavior, 5(4), 331–345. https://doi.org/10.1089/109493102760275581

Han, P., Wang, P., Lin, Q., Tian, Y., Gao, F., & Chen, Y. (2017). Reciprocal relationship between internet addiction and network-related maladaptive cognition among Chinese college freshmen: A longitudinal cross-lagged analysis. Frontiers in Psychology, 8(JUN), 1–9. https://doi.org/10.3389/fpsyg.2017.01047

Harlendea, C. Z., & Kartasasmita, S. (2021). The Relationship Between Loneliness and Problematic Internet Use Among Young Adults Who Are Social Media Users. In S. Kartasasmita , Advances in Social Science, Education and Humanities Research, 570, . 365-370). Atlantis Press SARL.

Hobart, J., & Cano, S. (2009). Improving the evaluation of therapeutic interventions in multiple sclerosis: The role of new psychometric methods. Health Technology Assessment, 13(12). https://doi.org/10.3310/hta13120

Hu, L. ., & Bentler, P. . (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55.

https://doi.org/10.1080/10705519909540118

International Test Commission. (2016). ITC Guidelines for Translating and Adapting Tests. http://www.intestcom.org

Jia, R., & Jia, H. . (2009). Factorial Validity of Problematic Internet Use Scales. Computers in Human Behavior, 25(6), 1335–1342. https://doi.org/https://doi.org/10.1016/j.chb.2009.06.004

Kim, S.-H., Yim, H.-W., Jo, S.-J., Jung, K.-I., Lee, K., & Park, M.-H. (2018). The Effects of Group Cognitive Behavioral Therapy on the Improvement of Depression and Anxiety in Adolescents with Problematic Internet Use. Journal of the Korean Academy of Child and Adolescent Psychiatry, 29(2), 73–79. https://doi.org/10.5765/jkacap.2018.29.2.73

Komnenić, D., Filipović, S., & Vukosavljević-Gvozden, T. (2015). Assessing maladaptive cognitions related to online gaming: Proposing an adaptation of online cognitions scale. Computers in Human Behavior, 51(PA), 131–139. https://doi.org/10.1016/j.chb.2015.04.051

Li, W., O’Brien, J. E., Snyder, S. M., & Howard, M. O. (2016). Diagnostic criteria for problematic internet use among U.S. university students: A mixed-methods evaluation. PLoS ONE, 11(1), 1–14. https://doi.org/10.1371/journal.pone.0145981

Lynn, M. (1986). Determination and quantification of content validity index. Nursing Research, 35, 382–386. https://doi.org/https://doi.org/10.1097/00006199-198611000-00017

Malak, M. . (2017). Internet Addiction and Cognitive Behavioral Therapy. Intechopen Journal, 5(3), 141–150. https://doi.org/10.5772/intechopen.71277

Natanael, Y. (2021). Analisis Rasch model Indonesia Problematic Internet Use Scale (IPIUS). Persona:Jurnal Psikologi Indonesia, 10(1), 167–186. https://doi.org/10.30996/persona.v10i1.4827

Nwufo, J. I., Ike, O. O., Chidozie, O. E., Nnadozie, E. E., & Nwufo, C. L. (2022). Maladaptive cognition and problematic Internet use among Nigerian adolescent students: Role of social anxiety. Journal of Psychology in Africa, 32(4), 353–358. https://doi.org/DOI: 10.1080/14330237.2022.2066365

Özcan, N. K., & Buzlu, S. (2005). Problemli internet kullanimini belirlemede yardimci bir araç:“İnternette bilişsel durum ölçeği” nin üniversite öğrencilerinde geçerlik ve güvenirliği. Journal of Dependence, 6, 19–26.

Przepiorka, A. M., Blachnio, A., Miziak, B., & Czuczwar, S. J. (2014). Clinical approaches to treatment of Internet addiction. Pharmacological Reports, 66(2), 187–191. https://doi.org/10.1016/j.pharep.2013.10.001

Polit, D. F.,& Beck, C. T. (2006). The content validity index: Are you sure you know what’s Being reported? Critique and recommendations. Research in Nursing & Health, 29, 489–497. https://doi.org/DOI: 10.1002/nur.20147

Pauls, F.,& Daseking, M. (2021). Revisiting the factor structure of the German WISC-V for clinical interpretability: An exploratory and confirmatory approach on the 10 primary Subtests. Frontiers in Psychology, 12. https://doi.org/https://doi.org/10.3389/fpsyg.2021.710929

Putri, B. A., & Wahyudi, H. (2022). The relationship between problematic internet use and the subjective well-being of children and adolescents. Jurnal Riset Psikologi, 2, 13–20. https://doi.org/10.29313/jrp.v2i1.668

Quirino, P. A. F., Pininga, R. M. C., Barros, M. M., Costa, P. F. F. da, Rodrigues Priscila Maria de Barros, Machado, M. C. F. de P., Galvão, P. V. M.,& Silva, H. R. S. e. (2019). Comparison of the prevalence of addiction internet in Brazilian university students: Online cognition scale versus internet addiction test. Open Journal of Depression and Anxiety, November, 09–19. https://doi.org/10.36811/ojda.2019.110003

Rini, E. S., Abdullah, M., & Rinaldi, M. R. (2020). Loneliness and problematic internet use among university students. Jurnal Psikologi, 11(2), 228–238. https://doi.org/10.24036/rapun.v11i2.

Roberts, A., Sharman, S., & Bowden-Jones, H. (2022). Clinical services for problematic internet usage. Current Opinion in Behavioral Sciences, 46(July), 101180. https://doi.org/10.1016/j.cobeha.2022.101180

Silva, H. R. de S. e., Areco, K. C. N., Bandiera-Paiva, P., Galvao, P. V. M., Garcia, A. N. de M., & Silveira, D. X. da. (2017). Confiabilidade e validade de construto da online cognition scale da versão Português (Brasil) (OCS-BR). Jornal Brasileiro de Psiquiatria, 66(1), 19–28. https://doi.org/10.1590/0047-2085000000146

Sürücü, L., & Maslakçi, A. (2020). Validity and reliability in quantitative research. Business & management studies: An International Journal, 8(3). https://doi.org/https://doi.org/10.15295/bmij.v8i3.1540

Streiner, D. L., & Norman, G. . (2003). Health measurement scales. In: A practical guide to their development and use. Oxord University Press.

Syihab, A., Rani, D., & Paramita, A. D. (2020). Hubungan antara Psychological Well-Being dan Problematic Internet Use pada Emerging Adult. ANFUSINA: Journal of Psychology, 3(1), 51–68. https://doi.org/10.24042/ajp.v3i1.6116

Tavakol, M., & Wetzel, A. (2020). Factor Analysis: a means for theory and instrument development in support of construct validity. International Journal of Medical Education, 11, 245–247. https://doi.org/10.5116/ijme.5f96.0f4a

Wölfling, K., & Dominick, N. (2022). Using cognitive behavioral therapy as the select treatment approach for problematic Internet usage. Current Opinion in Behavioral Sciences, 45, 101121. https://doi.org/10.1016/j.cobeha.2022.101121

Waltz, C., Strickland, O. & Lenz, E. (1991) Measurement in Nursing Research.2nd Edition, F.A. Davis Company, Philadelphia.

Wongpakaran, N., Wongpakaran, T., Pinyopornpanish, M., Simcharoen, S., & Kuntawong, P. (2021). Loneliness and problematic internet use: testing the role of interpersonal problems and motivation for internet use. BMC Psychiatry, 21(1), 1–11. https://doi.org/10.1186/s12888-021-03457-y

Xia, Y., & Yang, Y. (2019). RMSEA, CFI, and TLI in structural equation modeling with ordered categorical data: The story they tell depends on the estimation methods. Behavior Research Methods, 51(1), 409–428. https://doi.org/https://doi.org/10.3758/s13428-018-1055-2

Yashinta, Y., & Hurriyati, D. (2020). Problematic Internet Use digunakan Ketika Kesepian pada Remaja. Jurnal Ilmiah Psyche, 14, 45–60. https://doi.org/10.33557/jpsyche.v14i1.983

Zamanzadeh, V., Ghahramanian, A., Rassouli, M., Abbaszadeh, A., Alavi-Majd, H., & Nikanfar, A. (2015). Design and implementation content validity study: Development of an instrument for measuring patient-centered Communication. J Caring Sci, 4(2), 165–178. https://doi.org/10.15171/jcs.2015.017

Downloads

Published

2024-01-31

How to Cite

Purwati, D. U., & Hanifah, H. (2024). Adaptation of the Indonesian version of the online cognition scale to measure problematic internet use. Jurnal Ilmiah Psikologi Terapan, 12(1), 24–32. https://doi.org/10.22219/jipt.v12i1.28194

Issue

Section

Articles