Analisa Sentimen Tweet Berbahasa Indonesia Dengan Menggunakan Metode Lexicon Pada Topik Perpindahan Ibu Kota Indonesia

Main Article Content

Abdul Hadiy Dyo Fatra
Nur Hayatin
Christian Sri Kusuma Aditya

Abstract

This study proposes a classification of public response to the government's decision to move the Indonesian capital using the lexicon method. The results of testing accuracy are measured using a confusion matrix. The data in this study use data from Twitter in the form of tweets. The data contains tweets of community responses to the decision to move the Indonesian capital. Data passes through 5 preprocessing processes, namely case folding, punctuation removal, stopword removal, stemming, and tokenizing. Lexicon is used because it produces good accuracy values. In this study also will look for a dictionary that has the best classification results. The results of this study show the results of a good classification by approaching the results by experts.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
A. H. D. Fatra, N. Hayatin, and C. S. K. Aditya, “Analisa Sentimen Tweet Berbahasa Indonesia Dengan Menggunakan Metode Lexicon Pada Topik Perpindahan Ibu Kota Indonesia”, JR, vol. 2, no. 11, Jan. 2024.
Section
Articles

References

A. C. Sari et al., “Komunikasi dan Media Sosial,” no. December, 2018.

A. Majumdar and I. Bose, “Do tweets create value? A multi-period analysis of Twitter use and content of tweets for manufacturing firms,” Int. J. Prod. Econ., vol. 216, no. August 2018, pp. 1–11, 2019.

J. Weng, E. P. Lim, J. Jiang, and Q. He, “TwitterRank: Finding topic-sensitive influential twitterers,” WSDM 2010 - Proc. 3rd ACM Int. Conf. Web Search Data Min., pp. 261–270, 2010.

I. Zulfa and E. Winarko, “Sentimen Analisis Tweet Berbahasa Indonesia Dengan Deep Belief Network,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 11, no. 2, p. 187, 2017.

S. Deng, A. P. Sinha, and H. Zhao, “Adapting sentiment lexicons to domain-specific social media texts,” Decis. Support Syst., vol. 94, pp. 65–76, 2017.

A. R. Alaei, S. Becken, and B. Stantic, “Sentiment Analysis in Tourism: Capitalizing on Big Data,” J. Travel Res., vol. 58, no. 2, pp. 175–191, 2019.

]H. Himawan, W. Kaswidjanti, A. Sentimen, M. Sosial, and L. Based, “Metode Lexicon Based Dan Support Vector Machine Untuk Menganalisis Sentimen Pada Media Sosial Sebagai Rekomendasi Oleh-Oleh Favorit,” vol. 2018, no. November, pp. 235–244, 2018.

V. Effendy, “Analisis Sentimen Berbahasa Indonesia Dengan Pendekatan Lexicon Based ( Studi Kasus : Solusi Pengelolaan Sampah ),” J. Ilm. Komput. dan Inform. ( KOMPUTA ), vol. 4, no. 1, pp. 55–60, 2015.

Y. Azhar, “Metode Lexicon-Learning Based Untuk Identifikasi Tweet Opini Berbahasa Indonesia,” J. Nas. Pendidik. Tek. Inform., vol. 6, no. 3, p. 237, 2018.

F. Krüger, “Activity, Context, and Plan Recognition with Computational Causal Behaviour Models,” ResearchGate, no. August, 2018.