Penerapan Model EfficientNetV2-B0 pada Benchmark IP102 Dataset untuk Menyelesaikan Masalah Klasifikasi Hama Serangga
Main Article Content
Abstract
Hama serangga merupakan masalah yang sering di hadapi oleh petani. Karena ukurannya yang kecil dan jenis spesiesnya banyak. tak jarang petanipun kesulitan untuk menjaga tanaman mereka dari ancaman hama serangga karena penanganannya tidak memakai satu obat, melainkan dengan mencocokan spesies serangga. Sehingga karena banyaknya obat pembasmi, petanipun bingung obat mana yang tepat. Di dalam penelitian ini, telah di coba penggunaan metode deep learning arsitektur model EfficientNetV2 B0 pada dataset IP102 yang berkarakteristik imbalance dan ada jenis serangga yang identik antara satu dengan yang lain. Penelitian ini bertujuan untuk mengeksplorasi kemungkinan model kecil yang dapat di implementasikan di smartphone atau IOT yang mudah di bawa ke ladang pertanian tanpa tergantung pada internet. Model terbaik yang berhasil dibuat memperoleh akurasi 51% dengan F1-Score 50.14%.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
“FAO - News Article: Climate change fans spread of pests and threatens plants and crops, newFAO study.” https://www.fao.org/news/story/en/item/1402920/icode (accessed Dec. 04, 2022).
X. Wu, C. Zhan, Y.-K. Lai, M.-M. Cheng, and J. Yang, “IP102: A Large-Scale Benchmark Dataset for Insect Pest Recognition.” pp. 8787–8796, 2019. Accessed: Dec. 04, 2022. [Online]. Available: https://github.com/
G. Mittal, C. Liu, N. Karianakis, V. Fragoso, M. Chen, and Y. Fu, “HyperSTAR: Task- Aware Hyperparameters for Deep Networks,” Proceedings of the IEEE Computer Society Conference onComputer Vision and Pattern Recognition, pp. 8733–8742, May 2020, doi: 10.48550/arxiv.2005.10524.
L. Xu and Y. Wang, “XCloud: Design and Implementation of AI Cloud Platform with RESTful API Service,” Dec. 2019, doi: 10.48550/arxiv.1912.10344.
F. Ren, W. Liu, and G. Wu, “Feature reuse residual networks for insect pest recognition,”IEEEAccess, vol. 7, pp. 122758–122768, 2019, doi: 10.1109/ACCESS.2019.2938194.
L. Nanni, G. Maguolo, and F. Pancino, “Insect pest image detection and recognition based on bio- inspired methods,” Ecol Inform, vol. 57, p. 101089, May 2020, doi: 10.1016/J.ECOINF.2020.101089.
E. Bollis, H. Pedrini, and S. Avila, “Weakly Supervised Learning Guided by Activation Mapping Applied to a Novel Citrus Pest Benchmark,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, vol. 2020-June, pp. 310–319, Apr. 2020, doi: 10.48550/arxiv.2004.11252.
E. Bollis, H. Maia, H. Pedrini, and S. Avila, “Weakly supervised attention-based models using activation maps for citrus mite and insect pest classification,” Comput Electron Agric, vol. 195, p.106839, Apr. 2022, doi: 10.1016/J.COMPAG.2022.106839.
L. Nanni, A. Manfè, G. Maguolo, A. Lumini, and S. Brahnam, “High performing ensemble of convolutional neural networks for insect pest image detection,” Ecol Inform, vol. 67, p. 101515, Mar. 2022, doi: 10.1016/J.ECOINF.2021.101515.
J. Deng, W. Dong, R. Socher, L.-J. Li, Kai Li, and Li Fei-Fei, “ImageNet: A large-scale hierarchical image database,” pp. 248–255, Mar. 2010, doi: 10.1109/CVPR.2009.5206848.
L. Perez and J. Wang, “The Effectiveness of Data Augmentation in Image Classification using Deep Learning,” Dec. 2017, doi: 10.48550/arxiv.1712.04621.
C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep Learning,” J Big Data, vol. 6, no. 1, pp. 1–48, Dec. 2019, doi: 10.1186/S40537-019-0197- 0/FIGURES/33.
M. Tan and Q. v. Le, “EfficientNetV2: Smaller Models and Faster Training,” Apr. 2021, doi: 10.48550/arxiv.2104.00298.
M. Tan and Q. v. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,” 36th International Conference on Machine Learning, ICML 2019, vol. 2019- June, pp.10691–10700, May 2019, doi: 10.48550/arxiv.1905.11946.
J. Jin, A. Dundar, and E. Culurciello, “Flattened Convolutional Neural Networks for Feedforward Acceleration,” 3rd International Conference on Learning Representations, ICLR 2015 - Workshop Track Proceedings, Dec. 2014, doi: 10.48550/arxiv.1412.5474.
H. Gholamalinezhad and H. Khosravi, “Pooling Methods in Deep Neural Networks, a Review,” Sep. 2020, doi: 10.48550/arxiv.2009.07485.
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” Journal of Machine Learning Research, vol.15, no. 56, pp. 1929–1958, 2014, Accessed: Dec. 09, 2022. [Online]. Available: http://jmlr.org/papers/v15/srivastava14a.html
S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift,” 32nd International Conference on Machine Learning, ICML 2015, vol. 1, pp. 448–456, Feb. 2015, doi: 10.48550/arxiv.1502.03167.
G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely Connected Convolutional Networks,” Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017-January, pp. 2261–2269, Aug. 2016, doi: 10.48550/arxiv.1608.06993.
D. P. Kingma and J. L. Ba, “Adam: A Method for Stochastic Optimization,” 3rd InternationalConference on Learning Representations, ICLR 2015 - Conference Track Proceedings, Dec. 2014, doi: 10.48550/arxiv.1412.6980.
M. Feurer and F. Hutter, “Hyperparameter Optimization,” pp. 3–33, 2019, doi: 10.1007/978-3-030-05318-5_1.
M. v. Valueva, N. N. Nagornov, P. A. Lyakhov, G. v. Valuev, and N. I. Chervyakov, “Application of the residue number system to reduce hardware costs of the convolutional neuralnetwork implementation,” Math Comput Simul, vol. 177, pp. 232– 243, Nov. 2020, doi: 10.1016/J.MATCOM.2020.04.031.
K. Itoh, W. Zhang, Y. Ichioka, and J. Tanida, “Parallel distributed processing model with local space-invariant interconnections and its optical architecture,” Applied Optics, Vol. 29, Issue 32, pp. 4790-4797, vol. 29, no. 32, pp. 4790–4797, Nov. 1990, doi: 10.1364/AO.29.004790