Empowering scientific thinking skills through creative problem solving with scaffolding learning
DOI:
https://doi.org/10.22219/jpbi.v5i1.7135Keywords:
Creative problem solving, scaffolding learning, scientific thinking skillsAbstract
Scientific thinking is a crucial skill for students in facing 21st-century challenges. The aim of this study was to analyze the effect of Creative Problem Solving (CPS) with scaffolding learning implementation on students' thinking skills. The study employed pre-experimental design in which the sample was 96 of population was 270 students. The sampling technique used was cluster random sampling. The data obtained from the test instrument constructed from four aspects observed. The data was analyzed using dependent t-test. The results showed that there was an influence of the CPS with scaffolding on students' scientific thinking skills. Thus, CPS with scaffolding learning effectively empowered the students’ scientific thinking skills.
Downloads
References
Anas, N. (2016). Analisis kemampuan berpikir ilmiah (scientific thinking) siswa SD Tekad Mulia. Nizhamiyah, 4(1), 2016. Retrieved from http://jurnaltarbiyah.uinsu.ac.id/index.php/nizhamiyah/article/download/25/23
Ayers, S. J. (1989). Creative problem solving in the classroom. Lubbock. Retrieved from https://files.eric.ed. gov/fulltext/ED317446.pdf
Bao, L., Cai, T., Koenig, K., Fang, K., Han, J., Wang, J., … Wu, N. (2009). Learning and scientific reasoning. Science, 323(5914), 586–587. doi: https://doi.org/10.1126/science.1167740
Belland, B. R. (2017). Instructional scaffolding: Foundations and evolving definition. Instructional Scaffolding in STEM Education: Strategies and Efficacy Evidence. Cham: Springer International Publishing. doi: https://doi.org/10.1007/978-3-319-02565-0
Bevins, S., & Price, G. (2016). Reconceptualising inquiry in science education. International Journal of Science Education, 38(1), 17–29. doi: https://doi.org/10.1080/09500693.2015.1124300
Caleb Chidozie Chinedu, Olabiyi, O. S., & Kamin, Y. Bin. (2015). Strategies for improving higher order thinking skills in teaching and learning of design and technology education. Journal of Techniqal Education and Training, 7(2), 35–43. Retrieved from http://penerbit.uthm.edu.my/ojs/index.php/JTET/ article/view/1081/795
Chairani, Z. (2015). Scaffolding dalam pembelajaran matematika. Math Didactic: Jurnal Pendidikan Matematika, 1(1), 39–44. Retrieved from https://media.neliti.com/media/publications/176909-ID-scaffol ding-dalam-pembelajaran-matematik.pdf
Effendi, A. (2017). Implementation of creative problem solving model to improve the high school student’s metacognitive. In Journal of Physics: Conference Series (Vol. 812, p. 012065). doi: https://doi.org/10. 1088/1742-6596/812/1/012065
Ekanem, S. A., Ekanem, R. S., Ejue, J. B., & Amimi, P. B. (2010). Science and technology research for sustainable development in Africa: The imperative of education. An International Multi-Disciplinary Journal, 4(3b), 71–89. Retrieved from https://www.ajol.info/index.php/afrrev/article/download/60227/ 48474
Fitriyanti, I., Hidayat, A., & Munzil. (2017). Pengembangan perangkat pembelajaran IPA untuk meningkatkan kemampuan berpikir tingkat tinggi dan penalaran ilmiah siswa sekolah menengah pertama. Jurnal Pembelajaran Sains, 1(1), 27–34. Retrieved from http://journal2.um.ac.id/index.php/jpsi/article/down load/651/791
Griffin, P., McGaw, B., & Care, E. (2012). Assessment and teaching of 21st century skills. Dordrecht: Springer Netherlands. doi: https://doi.org/10.1007/978-94-007-2324-5
Hu, R., Xiaohui, S., & Shieh, C. J. (2017). A study on the application of creative problem solving teaching to statistics teaching. Eurasia Journal of Mathematics, Science and Technology Education, 13(7), 3139–3149. doi: https://doi.org/10.12973/eurasia.2017.00708a
Jerome, C., Lee, J. A.-C., & Ting, S.-H. (2017). What students really need : instructional strategies that enhance higher order thinking skills (HOTS) among unimas undergraduates. International Journal of Business and Society, 18(4), 661–668. Retrieved from http://www.ijbs.unimas.my/images/repository/ pdf/Vol18-s4-paper2.pdf
Jo, I., & Bednarz, S. W. (2014). Developing pre-service teachers’ pedagogical content knowledge for teaching spatial thinking through geography. Journal of Geography in Higher Education, 38(2), 301–313. doi: https://doi.org/10.1080/03098265.2014.911828
Kuhn, D. (2010). What is scientific thinking and how does it develop? In The Wiley-Blackwell Handbook of Childhood Cognitive Development (pp. 497–523). Oxford, UK: Wiley-Blackwell. doi: https://doi.org/10. 1002/9781444325485.ch19
Kuhn, D., & Dean, D. (2005). Is developing scientific thinking all about learning to control variables? Psychological Science, 16(11), 866–870. doi: https://doi.org/10.1111/j.1467-9280.2005.01628.x
Lederman, N. G., Lederman, J. S., & Antink, A. (2013). Nature of science and scientific inquiry as contexts for the learning of science and achievement of scientific literacy. International Journal of Education in Mathematics Science and Technology, 1(3), 138–147. Retrieved from https://files.eric.ed.gov/fulltext/ED 543992.pdf
Lu, H.-K., & Lin, P.-C. (2017). A study of the impact of collaborative problem-solving strategies on students’ performance of simulation-based learning — A case of network basic concepts course. International Journal of Information and Education Technology, 7(5), 361–366. doi: https://doi.org/10.18178/ijiet.2017.7.5.895
Malik, S. A. (2017). Revisiting and re-representing scaffolding: The two gradient model. Cogent Education, 4(1), 1–13. doi: https://doi.org/10.1080/2331186X.2017.1331533
Marra, R. M., Jonassen, D. H., & Palmer, B. (2014). Why problem-based learning works: Theoretical foundations. Journal on Excellence in College Teaching, 25, 221–238. doi: https://doi.org/10.1111/j. 1600-0722.2010.00745.x
McComas, W. F. (2014). Scientific thinking skills. In W. F. McComas (Ed.), The Language of Science Education (pp. 96–96). Rotterdam: SensePublishers. doi: https://doi.org/10.1007/978-94-6209-497-0_86
McFarlane, D. A. (2013). Understanding the challenges of science education in the 21st century: New opportunities for scientific literacy. International Letters of Social and Humanistic Sciences, 4, 35–44. doi: https://doi.org/10.18052/www.scipress.com/ILSHS.4.35
Murtagh, L. &, & Webster, M. (2010). Summary for Policymakers. In Intergovernmental Panel on Climate Change (Ed.), Climate Change 2013 - The Physical Science Basis (Vol. 1, pp. 1–30). Cambridge: Cambridge University Press. doi: https://doi.org/10.1017/CBO9781107415324.004
Ogunseemi, O. E. (2015). Science and technology in Africa for the twenty first century: Perspectives for change. European Scientific Journal, 307–313. Retrieved from https://eujournal.org/index.php/esj/ article/download/6540/6265
Putra, M. I. S., Widodo, W., Jatmiko, B., & Mundilarto. (2018). The deveopment of science CPS (Collaborative Problem Solving) learning model to improve future islamic elementary school teachers’ collaborative problem-solving skills and science literacy. Unnes Science Education Journal, 7(1), 35–49. doi: https://doi.org/10.15294/usej.v7i1.19536
Samana, W. (2013). Teacher’s and students’ scaffolding in an EFL classroom. Academic Journal of Interdisciplinary Studies, 2(8), 338–343. doi: https://doi.org/10.5901/ajis.2013.v2n8p338
Sari, D. M., Ikhsan, M., & Abidin, Z. (2018). The development of learning instruments using the creative problem-solving learning model to improve students’ creative thinking skills in mathematics. In Journal of Physics: Conference Series (Vol. 1088, p. 012018). doi: https://doi.org/10.1088/1742-6596/1088/ 1/012018
Shabani, K. (2016). Applications of Vygotsky’s sociocultural approach for teachers’ professional development. Cogent Education, 3(1), 1–10. doi: https://doi.org/10.1080/2331186X.2016.1252177
Shabani, K., Khatib, M., & Ebadi, S. (2010). Vygotsky’s zone of proximal development: Instructional implications and teachers’ professional development. English Language Teaching, 3(4), 237–248. doi: https://doi.org/10.5539/elt.v3n4p237
Thitima, G., & Sumalee, C. (2012). Scientific thinking of the learners learning with the knowledge construction model enhancing scientific thinking. In Procedia - Social and Behavioral Sciences (Vol. 46, pp. 3771–3775). doi: https://doi.org/10.1016/j.sbspro.2012.06.144
Vidal, R. V. V. (2010). Creative problem solving: An applied university course. Pesquisa Operacional, 30(2), 405–426. doi: https://doi.org/10.1590/S0101-74382010000200009
van de Pol, J., Volman, M., & Beishuizen, J. (2010). Scaffolding in teacher-student interaction: A decade of research. Educational Psychology Review, 22(3), 271–296. doi: https://doi.org/10.1007/s10648-010-9127-6
van de Pol, J., Volman, M., Oort, F., & Beishuizen, J. (2015). The effects of scaffolding in the classroom: Support contingency and student independent working time. Instructional Science, 43(5), 615–641. doi: https://doi.org/10.1007/s11251-015-9351-z
Walshaw, M. (2016). Lev Vygotsky. In E. de Freitas & M. Walshaw (Eds.), Alternative Theoretical Frameworks for Mathematics Education Research (pp. 11–37). Cham: Springer International Publishing. doi: https://doi.org/10.1007/978-3-319-33961-0_2
Wijayanti, A. (2014). Pengembangan autentic assesment berbasis proyek dengan pendekatan saintifik untuk meningkatkan keterampilan berpikir ilmiah mahasiswa. Jurnal Pendidikan IPA Indonesia, 3(2), 102–108. doi: https://doi.org/10.15294/jpii.v3i2.3107
Yin, K. Y. (2015). Collaborative problem solving promotes students’ interest. Journal of Economics and Economic Education Research, 16(1), 158–167. Retrieved from https://www.alliedacademies.org/ articles/religious-participation-and-economic-recessions.pdf
Zaim, M. (2017). Implementing scientific approach to teach english at senior high school in Indonesia. Asian Social Science, 13(2), 33. doi: https://doi.org/10.5539/ass.v13n2p33
Zidulka, A. D. (2017). Creative problem solving (CPS) in practice: A case study. University of Calgary. doi: https://doi.org/10.11575/PRISM/25483
Zulyadaini. (2017). Effects of creative problem solving learning model on mathematical problem solving skills of senior high school students. IOSR Journal of Research & Method in Education, 7(3), 33–37. doi: https://doi.org/10.9790/7388-0703033337
Downloads
Published
Issue
Section
License
Authors who publish with JPBI (Jurnal Pendidikan Biologi Indonesia) agree to the following terms:
- For all articles published in JPBI, copyright is retained by the authors. Authors give permission to the publisher to announce the work with conditions. When the manuscript is accepted for publication, the authors agree to automatic transfer of the publishing right to the publisher.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.