Hypothetical learning trajectory in microbiology course through argumentation-based inquiry learning
DOI:
https://doi.org/10.22219/jpbi.v10i2.32462Keywords:
argumentation-based inquiry, hypothetical learning trajectory, inquiry learning, microbiologyAbstract
The application of effective teaching methods needs to be implemented to improve the quality of microbiology education which can empower important competencies in the current era. This study aims to analyze the application and trajectory of argumentation-based inquiry learning through the application of microbiology lectures. This research uses research design methods consisting of preliminary design steps, teaching experiments and retrospective analysis. The source of the data comes from student learning activities in argumentation-based inquiry learning implemented in microbiology courses. The results showed that the learning trajectory of Hypothetical Learning Trajectory (HLT) in microbiology lectures with an argumentation-based inquiry model was in accordance with the stages of student research ranging from determining research themes, compiling proposals, designing and implementing data collection, analyzing data, discussing research results, writing research reports to conducting scientific publications in journals. Students who carry out microbiology lectures using argumentation-based inquiry learning through the implementation of different research in the field of microbiology experience a similar learning trajectory so that a specific and distinctive set of Hypothetical Learning Trajectory (HLT) can be formulated.
Downloads
References
Acar, O., & Patton, B. R. (2012). Argumentation and formal reasoning skills in an argumentation-based guided inquiry course. Procedia - Social and Behavioral Sciences, 46, 4756–4760. https://doi.org/10.1016/j.sbspro.2012.06.331
Alonzo, A., & Elby, A. (2019). Beyond empirical adequacy: learning progressions as models and their value for teachers. Cognition and Instruction, 37, 1–37. https://doi.org/10.1080/07370008.2018.1539735
Ammah-Tagoe, N., Caspary, K., Cannady, M. A., & Greenwald, E. (2021). Learning to teach to argue: case studies in professional learning in evidence-based science writing. Teachers College Record, 123(7), 1–39. https://doi.org/10.1177/016146812112300708
Arens, V. Z., & Glazko, V. I. (2022). Science is the supporting apparatus of civilization. Bulletin of Russian Academy of Natural Sciences, 22, 99–104. https://doi.org/10.52531/1682-1696-2022-22-3-99-104
Baroody, A. J., Clements, D. H., & Sarama, J. (2022). Lessons learned from 10 experiments that tested the efficacy and assumptions of hypothetical learning trajectories. Education Sciences, 12(3). https://doi.org/10.3390/educsci12030195
Berland, L. K., & McNeill, K. L. (2010). A learning progression for scientific argumentation: Understanding student work and designing supportive instructional contexts. Science Education, 94(5), 765–793. https://doi.org/https://doi.org/10.1002/sce.20402
Biggs, J. B., & Collis, K. F. (2014). Evaluating the quality of learning: The SOLO taxonomy (Structure of the Observed Learning Outcome). Academic Press. https://books.google.co.id/books/about/Evaluating_the_Quality_of_Learning.html?id=xUO0BQAAQBAJ&redir_esc=y
Borisenko, E. Y., Maksimova, E. N., Makarkina, N. V., & Gavrikov, D. E. (2021). Features of biology education research organization in schools. Samara Journal of Science, 10(1), 302–307. https://doi.org/10.17816/snv2021101304
Brockman, R. M., Taylor, J. M., Segars, L. W., Selke, V., & Taylor, T. A. H. (2020). Student perceptions of online and in-person microbiology laboratory experiences in undergraduate medical education. Medical Education Online, 25(1). https://doi.org/10.1080/10872981.2019.1710324
Bull, H., Premkumar, K., & Acharibasam, J. W. (2020). Using an innovative intervention to promote active learning in an introductory microbiology course. The Canadian Journal for the Scholarship of Teaching and Learning, 11(2). https://doi.org/10.5206/cjsotl-rcacea.2020.2.7978
Cardace, A., Wilson, M., & Metz, K. E. (2021). Designing a learning progression about micro-evolution to inform instruction and assessment in elementary science. Education Sciences, 11(10). https://doi.org/10.3390/educsci11100609
Clements, D. H., & Sarama, J. (2020). Learning and teaching early math: The learning trajectories approach. Routledge. https://www.routledge.com/Learning-and-Teaching-Early-Math-The-Learning-Trajectories-Approach/Clements-Sarama/p/book/9780367521974
Demirbag, M., & Gunel, M. (2014). Integrating argument-based science inquiry with modal representations: Impact on science achievement, argumentation, and writing skills. Educational Sciences: Theory and Practice, 14(1), 386–391. https://doi.org/10.12738/estp.2014.1.1632
Demircioglu, T., & Ucar, S. (2015). Investigating the effect of argument-driven inquiry in laboratory instruction. Educational Sciences: Theory and Practice, 15(1), 267–283. https://doi.org/10.12738/estp.2015.1.2324
Dikilitaş, K., & Bostancioglu, A. (2019). Inquiry and research skills for language teachers. Palgrave Macmillan Cham. https://doi.org/10.1007/978-3-030-21137-0
Duschl, R. A. (2019). Learning progressions: Framing and designing coherent sequences for STEM education. Disciplinary and Interdisciplinary Science Education Research, 1(1), 4. https://doi.org/10.1186/s43031-019-0005-x
Earla, P. (2015). Biology and its significance. Research and Reviews: Research Journal of Biology, 3(2), 1–18. https://www.rroij.com/open-access/biology-and-its-significance.pdf
Fakhriyah, F., Rusilowati, A., Wiyanto, W., & Susilaningsih, E. (2021). Argument-driven inquiry learning model: A systematic review. International Journal of Research in Education and Science, 767–784. https://doi.org/10.46328/ijres.2001
Fating, A., Deshmukh, J., Gode, Y., Dhawade, M. R., Jadhav, D., & Wankhade, Y. (2024). Assess the effectiveness of an inquiry based learning method in microbiology for undergraduate medical students. E3S Web of Conferences, 491, 1–6. https://doi.org/10.1051/e3sconf/202449104009
Gravemeijer, K., & van Eerde, D. (2009). Design research as a means for building a knowledge base for teachers and teaching in mathematics education. Elementary School Journal, 109(5), 510–524. https://doi.org/10.1086/596999
Hasibuan, H., & Siregar, S. A. (2023). Bioentrepreneur to grow biology students’ creativity UIN Syekh Ali Hasan Ahmad Addary Padangsidimpuan. Bioedunis Journal, 02(01), 8–14. https://doi.org/10.24952/bioedunis.v2i1.8203.
Hasnudiah, N. (2016). Pengaruh argumen-driven inquiry dengan scaffolding dan kemampuan akademik terhadap keterampilan argumentasi, keterampilan berfikir kritis, dan pemahaman konsep biologi dasar mahasiswa Jurusan Pendidikan MIPA Universitas Lampung [Thesis (Doctoral)]. Universitas Negeri Malang. https://repository.um.ac.id/64645/
Ibarra, L., Soriano, A., Ponce, P., & Molina, A. (2019). Research skills enhancement through a research-based wit-learning methodology. 2019 20th International Conference on Research and Education in Mechatronics (REM), 1–7. https://doi.org/10.1109/REM.2019.8744093
Jamilah, J., Sandie, S., & Muchtadi, M.. (2023). Learning trajectory pengembangan kompetensi pedagogik calon guru matematika. Jurnal Pendidikan Informatika Dan Sains, 12(1), 197–210. https://doi.org/10.31571/saintek.v12i1.5044
Jimenez-Aleixandre, M. P., & Brocos, P. (2021). International Handbook of Inquiry and Learning. Routledge. https://doi.org/10.4324/9781315685779
Kusumaningsih, W., Hartono, & Nursyahidah, F. (2022). Designing hypothetical learning trajectory for lines and angles using Central Java traditional house context. AIP Conference Proceedings, 2577(1), 020032. https://doi.org/10.1063/5.0096084
Lall, M., & Datta, K. (2021). A pilot study on case-based learning (CBL) in medical microbiology; Students perspective. Medical Journal Armed Forces India, 77, S215–S219. https://doi.org/10.1016/j.mjafi.2021.01.005
Lantakay, C. N., Pasu Senid, P., S Blegur, I. K., & Samo, D. D. (2023). Hypothetical Learning Trajectory: Bagaimana Perannya dalam Pembelajaran Matematika di Sekolah Dasar? Journal of Mathematics Education and Application, 3(2). https://mathjournal.unram.ac.id/index.php/Griya/article/view/329
Lickliter, R., & Honeycutt, H. (2015). Biology, development, and human systems. In Handbook of Child Psychology and Developmental Science (pp. 1–46). Wiley. https://doi.org/10.1002/9781118963418.childpsy105
Maknun, D., Gloria, R. Y., & Muzakki, J. A. (2020). Keterampilan meneliti yang dimiliki mahasiswa prodi pendidikan biologi se-Wilayah III Cirebon. Jurnal Inovasi Pendidikan IPA, 6(1). https://doi.org/10.21831/jipi.v6i1.28251
Memis, E. K., & Akkas, B. N. C. (2020). Developing critical thinking skills in the thinking-discussion-writing cycle: The argumentation-based inquiry approach. Asia Pacific Education Review, 21(3), 441–453. https://doi.org/10.1007/s12564-020-09635-z
Muliadi, A. (2020). Microbiology learning based on bioentrepreneurship: Prospective teacher’s perception. Jurnal Ilmu Sosial Pendidikan, 4(4), 352–357. http://ejournal.mandalanursa.org/index.php/JISIP/index
Mustofa, M. A. (2022). Model-model pembelajaran sains di MTS Negeri Semarang. Jurnal Ilmu Sosial Dan Pendidikan (JISIP), 6(2), 2550–2559. https://doi.org/10.36312/jisip.v6i1.3179/http
Rapanta, C., & Felton, M. K. (2022). Learning to argue through dialogue: A review of instructional approaches. In Educational Psychology Review (Vol. 34, Issue 2, pp. 477–509). Springer. https://doi.org/10.1007/s10648-021-09637-2
Rezky, R. (2019). Hypothetical Learning Trajectory (HLT) dalam perspektif psikologi belajar matematika. EKSPOSE: Jurnal Penelitian Hukum dan Pendidikan, 18(1), 762–769. http://jurnal.iain-bone.ac.id/index.php/ekspose
Rodríguez, G., Pérez, N., Núñez, G., Baños, J. E., & Carrió, M. (2019). Developing creative and research skills through an open and interprofessional inquiry-based learning course. BMC Medical Education, 19(134), 1–13. https://doi.org/10.1186/s12909-019-1563-5
Rodríguez-Vargas, M. C., Alcázar-Aguilar, O. O., Gil-Cueva, S. L., Garay-Argandoña, R., & Hernandez, R. M. (2020). Researchers’ seedbeds for the development of research skills in universities. International Journal of Criminology and Sociology, 9, 961–967. https://cris.continental.edu.pe/en/publications/researchers-seedbeds-for-the-development-of-research-skills-in-un
Roviati, E. (2020). Peranan Argument-Based Inquiry Laboratory (ABILA) dalam membangun keterampilan argumentasi ilmiah dan berpikir kritis mahasiswa calon guru biologi [Disertasi]. Universitas Pendidikan Indonesia. http://repository.upi.edu/47104/
Roviati, E., & Widodo, A. (2019). Kontribusi argumentasi ilmiah dalam pengembangan keterampilan berpikir kritis. Titian Ilmu: Jurnal Ilmiah Multi Sciences, 11(2), 56–66. https://doi.org/10.30599/jti.v11i2.454
Rustaman, N. Y. (2005). Perkembangan penelitian pembelajaran berbasis inkuiri dalam pendidikan sains. http://file.upi.edu/Direktori/FPMIPA/JUR._PEND._BIOLOGI/195012311979032-NURYANI_RUSTAMAN/PenPemInkuiri.pdf
Saefi, M., Adi, W. C., Rahmasiwi, A., Maghfiroh, H., Setiawan, M. E., Adlini, M. N., & Rizalia, S. (2023). Teaching microbial analysis techniques for the characterisation of baker’s yeast through the inquiry-based laboratory. JPBI( Jurnal Pendidikan Biologi Indonesia), 9(3), 282–292. https://doi.org/10.22219/jpbi.v9i
Sampson, V., Grooms, J., & Walker, J. P. (2010). Argument-driven inquiry as a way to help students learn how to participate in scientific argumentation and craft written arguments: An exploratory study. Science Education, 95(2), 217–257. https://doi.org/10.1002/sce.20421
Satybekova, M. A., Asipova, N. A., Chaldanbaeva, A. K., & Kyrbashova, M. T. (2023). Formation of subject competence students using competence-oriented tasks in biology. Perspectives of Science and Education, 62(2), 351–370. https://doi.org/10.32744/pse.2023.2.20
Simon, M. (2020). Hypothetical learning trajectories in mathematics education. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 354–357). Springer International Publishing. https://doi.org/10.1007/978-3-030-15789-0_72
Stevens, B. N. (2021). Developing the definite integral and accumulation function through adding up pieces: A hypothetical learning trajectory [Theses and Dissertations, Brigham Young University]. https://scholarsarchive.byu.edu/etd
Syafriandi, S., Fauzan, A., Lufri, L., & Armiati, A. (2020). Designing hypothetical learning trajectory for learning the importance of hypothesis testing. Journal of Physics: Conference Series, 1554(1), 012045. https://doi.org/10.1088/1742-6596/1554/1/012045
Sztajn, P., Confrey, J., Wilson, P. H., & Edgington, C. (2012). Learning trajectory based instruction: Toward a theory of teaching. Educational Researcher, 41(5), 147–156. https://doi.org/10.3102/0013189X12442801
Taş, E., Güler, H., Sarıgöl, J., Tepe, B., & Demirci, F. (2022). The impact of the argumentation- flipped learning model on the achievements and scientific process skills of students. Participatory Educational Research, 9, 335–357. https://doi.org/10.17275/per.22.142.9.6
Toulmin, S. E. (2003). The uses of argument (2nd ed.). Cambridge University Press. https://doi.org/DOI: 10.1017/CBO9780511840005
Tritschler, S., Bü Ttner, M., Fischer, D. S., Lange, M., Bergen, V., Lickert, H., & Theis, F. J. (2019). Concepts and limitations for learning developmental trajectories from single cell genomics. Development, 146(12), https://doi.org/10.1242/dev.170506
Webb, F., Smith, C., & Worsfold, K. (2011). Research skills toolkit. Griffith Institute for Higher Education. https://www.academia.edu/6648180/Research_Skills_Toolkit.
Yilmaz, Y., Cakiroglu, J., Ertepinar, H., & Erduran, S. (2017). The pedagogy of argumentation in science education: science teachers’ instructional practices. International Journal of Science Education, 39(11), 1443–1464. https://doi.org/10.1080/09500693.2017.1336807
Yuliardi, R., & Rosjanuardi, R. (2021). Hypothetical learning trajectory in student’s spatial abilities to learn geometric transformation. JRAMathEdu (Journal of Research and Advances in Mathematics Education), 6(3), 174–190. https://doi.org/10.23917/jramathedu.v6i3.13338
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with JPBI (Jurnal Pendidikan Biologi Indonesia) agree to the following terms:
- For all articles published in JPBI, copyright is retained by the authors. Authors give permission to the publisher to announce the work with conditions. When the manuscript is accepted for publication, the authors agree to automatic transfer of the publishing right to the publisher.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.