Bioinformatics approach to enhance the undergraduate biology students’ understanding of plant terpenoid

Authors

  • Risanti Dhaniaputri Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Indonesia
  • Hadi Suwono Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Indonesia
  • Betty Lukiati Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang,

DOI:

https://doi.org/10.22219/jpbi.v10i2.33884

Keywords:

bioinformatics, medicinal plants, biology undergraduate student profile

Abstract

Plant metabolite compounds have been applied on plant cellular metabolism, produces organic and inorganic compounds, primary and secondary bioactive molecules, such as glucose, amino acids, fat acids, alkaloids, flavonoids, and terpenoids. Undergraduate biology students learn about the plant terpenoid assisted by bioinformatics to store, manage, and interpret the molecular information about these compounds. This research aims to observe the students’ understanding of terpenoid through implementing bioinformatics approach. Besides, to investigate how practice the bioinformatics technology in learning terpenoid may impact students' comprehension of plant metabolism domain and their acquisition of bioinformatics inquiry skills. Bioinformatics is a computational database that relies on digital repositories of molecular biology informations. Data analysis was in the form of quantitative and qualitative descriptive using module learning resources based on terpenoid research and assisted by bioinformatics. The results indicate that students’ comprehension of learning and understanding terpenoid has improved, identification and analysis processes of article reviews showed that students were able to discuss and interpret research finding in silico bioinformatics using molecular docking procedures. Assessment of bioinformatics skills showed that all undergraduate biology students could follow the direct instructions well, answer the questions, practice the dry-lab experimental, and formulate the conclusion correctly.

Downloads

Download data is not yet available.

References

Abbas, F., Ke, Y., Yu, R., Yue, Y., Amanullah, S., Jahangir, M. M., & Fan, Y. (2017). Volatile terpenoids: Multiple functions, biosynthesis, modulation and manipulation by genetic engineering. Planta, 246(5), 803–816. https://doi.org/10.1007/s00425-017-2749-x

Ahmed, A. U. (2011). An overview of inflammation: Mechanism and consequences. Frontiers in Biology, 6(4), 274. https://doi.org/10.1007/s11515-011-1123-9

Babar, M. M., Zaidi, N.-S. S., Pothineni, V. R., Ali, Z., Faisal, S., Hakeem, K. R., & Gul, A. (2017). Application of bioinformatics and system biology in medicinal plant studies. In K. R. Hakeem, A. Malik, F. Vardar-Sukan, & M. Ozturk (Eds.), Plant Bioinformatics (pp. 375–393). Springer International Publishing. https://doi.org/10.1007/978-3-319-67156-7_15

Bain, S. A., Meagher, T. R., & Barker, D. (2022). Design, delivery and evaluation of a bioinformatics education workshop for 13-16-year-olds. Journal of Biological Education, 56(5), 570–580. https://doi.org/10.1080/00219266.2020.1858932

Branco, I., & Choupina, A. (2021). Bioinformatics: New tools and applications in life science and personalized medicine. Applied Microbiology and Biotechnology, 105(3), 937–951. https://doi.org/10.1007/s00253-020-11056-2

Chapman, B. S., Christmann, J. L., & Thatcher, E. F. (2006). Bioinformatics for undergraduates: Steps toward a quantitative bioscience curriculum. Biochemistry and Molecular Biology Education, 34(3), 180–186. https://doi.org/10.1002/bmb.2006.49403403180

Cheng, A.-X., Lou, Y.-G., Mao, Y.-B., Lu, S., Wang, L.-J., & Chen, X.-Y. (2007). Plant terpenoids: Biosynthesis and ecological functions. Journal of Integrative Plant Biology, 49(2), 179–186. https://doi.org/10.1111/j.1744-7909.2007.00395.x

Chhabra, R. (2021). Pathological inflammation and various mechanisms of apoptosis. European Journal of Experimental Biology, 11(4).

Courdavault, V., O’Connor, S. E., Jensen, M. K., & Papon, N. (2021). Metabolic engineering for plant natural products biosynthesis: New procedures, concrete achievements and remaining limits. Natural Product Reports, 38(12), 2145–2153. https://doi.org/10.1039/D0NP00092B

Cruz, J. V., Giuliatti, S., Alves, L. B., Silva, R. C., Ferreira, E. F. B., Kimani, N. M., Silva, C. H. T. P., Souza, J. S. N. de, Espejo-Román, J. M., & Santos, C. B. R. (2022). Identification of novel potential cyclooxygenase-2 inhibitors using ligand- and structure-based virtual screening approaches. Journal of Biomolecular Structure and Dynamics, 40(12), 5386–5408. https://doi.org/10.1080/07391102.2020.1871413

Dinsdale, E., Elgin, S. C. R., Grandgenett, N., Morgan, W., Rosenwald, A., Tapprich, W., Triplett, E. W., & Pauley, M. A. (2015). NIBLSE: A network for integrating bioinformatics into life sciences education. CBE—Life Sciences Education, 14(4), le3. https://doi.org/10.1187/cbe.15-06-0123

Frank, A., & Groll, M. (2017). The methylerythritol phosphate pathway to isoprenoids. Chemical Reviews, 117(8), 5675–5703. https://doi.org/10.1021/acs.chemrev.6b00537

Giofrè, S. V., Napoli, E., Iraci, N., Speciale, A., Cimino, F., Muscarà, C., Molonia, M. S., Ruberto, G., & Saija, A. (2021). Interaction of selected terpenoids with two SARS-CoV-2 key therapeutic targets: An in silico study through molecular docking and dynamics simulations. Computers in Biology and Medicine, 134, 104538. https://doi.org/10.1016/j.compbiomed.2021.104538

Gogoi, B., Chowdhury, P., Goswami, N., Gogoi, N., Naiya, T., Chetia, P., Mahanta, S., Chetia, D., Tanti, B., Borah, P., & Handique, P. J. (2021). Identification of potential plant-based inhibitor against viral proteases of SARS-CoV-2 through molecular docking, MM-PBSA binding energy calculations and molecular dynamics simulation. Molecular Diversity, 25(3), 1963–1977. https://doi.org/10.1007/s11030-021-10211-9

Gomez-Casati, D. F., Busi, M. V., Barchiesi, J., Peralta, D. A., Hedin, N., & Bhadauria, V. (2018). Applications of bioinformatics to plant biotechnology. Current Issues in Molecular Biology, 89–104. https://doi.org/10.21775/cimb.027.089

Greten, F. R., & Grivennikov, S. I. (2019). Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity, 51(1), 27–41. https://doi.org/10.1016/j.immuni.2019.06.025

Gualdani, R., Cavalluzzi, M., Lentini, G., & Habtemariam, S. (2016). The chemistry and pharmacology of citrus limonoids. Molecules, 21(11), 1530. https://doi.org/10.3390/molecules21111530

Joshi, T., Sharma, P., Joshi, T., & Chandra, S. (2020). In silico screening of anti-inflammatory compounds from Lichen by targeting cyclooxygenase-2. Journal of Biomolecular Structure and Dynamics, 38(12), 3544–3562. https://doi.org/10.1080/07391102.2019.1664328

Khater, S., Anand, S., & Mohanty, D. (2016). In silico methods for linking genes and secondary metabolites: The way forward. Synthetic and Systems Biotechnology, 1(2), 80–88. https://doi.org/10.1016/j.synbio.2016.03.001

Liang, X., Zhu, W., Lv, Z., & Zou, Q. (2019). Molecular computing and bioinformatics. Molecules, 24(13), 1–7. https://doi.org/10.3390/molecules24132358

Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64, 4–17. https://doi.org/10.1016/j.addr.2012.09.019

Ludwiczuk, A., Skalicka-Woźniak, K., & Georgiev, M. I. (2017). Terpenoids. In Pharmacognosy (pp. 233–266). Elsevier. https://doi.org/10.1016/B978-0-12-802104-0.00011-1

Madden, J. C., Enoch, S. J., Paini, A., & Cronin, M. T. D. (2020). A review of in silico tools as alternatives to animal testing: Principles, resources and applications. Alternatives to Laboratory Animals, 48(4), 146–172. https://doi.org/10.1177/0261192920965977

Mahmud, S., Biswas, S., Paul, G. K., Mita, M. A., Promi, M. M., Afrose, S., Hasan, Md. R., Zaman, S., Uddin, Md. S., Dhama, K., Emran, T. B., Saleh, Md. A., & Simal-Gandara, J. (2021). Plant-based phytochemical screening by targeting main protease of SARS-CoV-2 to design effective potent inhibitors. Biology, 10(7), 589. https://doi.org/10.3390/biology10070589

Martins, A., Fonseca, M. J., Lemos, M., Lencastre, L., & Tavares, F. (2020). bioinformatics-based activities in high school: Fostering students’ literacy, interest, and attitudes on gene regulation, genomics, and evolution. Frontiers in Microbiology, 11, 578099. https://doi.org/10.3389/fmicb.2020.578099

Moradi, M., Golmohammadi, R., Najafi, A., Moosazadeh Moghaddam, M., Fasihi-Ramandi, M., & Mirnejad, R. (2022). A contemporary review on the important role of in silico approaches for managing different aspects of COVID-19 crisis. Informatics in Medicine Unlocked, 28, 100862. https://doi.org/10.1016/j.imu.2022.100862

Osman, K., Hiong, L. C., Vebrianto, R., & Omar, Z. (2020). 21 st century biology: An interdisciplinary approach of biology, technology, engineering and mathematics education. Procedia - Social and Behavioral Sciences, 102(Ifee 2012), 188–194. https://doi.org/10.1016/j.sbspro.2013.10.732

Ren, H., Shi, C., & Zhao, H. (2020). Computational tools for discovering and engineering natural product biosynthetic pathways. iScience, 23(1), 100795. https://doi.org/10.1016/j.isci.2019.100795

Robinson, G. E., Banks, J. A., Padilla, D. K., Burggren, W. W., Cohen, C. S., Delwiche, C. F., Funk, V., Hoekstra, H. E., Jarvis, E. D., Johnson, L., Martindale, M. Q., del Rio, C. M., Medina, M., Salt, D. E., Sinha, S., Specht, C., Strange, K., Strassmann, J. E., Swalla, B. J., & Tomanek, L. (2010). Empowering 21st century biology. BioScience, 60(11), 923–930. https://doi.org/10.1525/bio.2010.60.11.8

Sadeghi, M., Miroliaei, M., Fateminasab, F., & Moradi, M. (2022). Screening cyclooxygenase-2 inhibitors from Allium sativum L. compounds: In silico approach. Journal of Molecular Modeling, 28(1), 24. https://doi.org/10.1007/s00894-021-05016-4

Sayres, M. A., Hauser, C., Sierk, M., Robic, S., Rosenwald, A. G., Smith, T. M., Triplett, E. W., Williams, J. J., Dinsdale, E., Morgan, W. R., Burnette, J. M., Donovan, S. S., Drew, J. C., Elgin, S. C. R., Fowlks, E. R., Galindo-Gonzalez, S., Goodman, A. L., Grandgenett, N. F., Goller, C. C., … Pauley, M. A. (2018). Bioinformatics core competencies for undergraduate life sciences education. PLOS ONE, 13(6), e0196878. https://doi.org/10.1371/journal.pone.0196878

Sharma, V., & Sarkar, I. N. (2013). Bioinformatics opportunities for identification and study of medicinal plants. Briefings in Bioinformatics, 14(2), 238–250. https://doi.org/10.1093/bib/bbs021

Taidi, L., Maurady, A., & Britel, M. R. (2022). Molecular docking study and molecular dynamic simulation of human cyclooxygenase-2 (COX-2) with selected eutypoids. Journal of Biomolecular Structure and Dynamics, 40(3), 1189–1204. https://doi.org/10.1080/07391102.2020.1823884

Tan, Y. C., Kumar, A. U., Wong, Y. P., & Ling, A. P. K. (2022). Bioinformatics approaches and applications in plant biotechnology. Journal of Genetic Engineering and Biotechnology, 20(1), 106. https://doi.org/10.1186/s43141-022-00394-5

Toby, I., Williams, J., Lu, G., Cai, C., Crandall, K. A., Dinsdale, E. A., Drew, J., Edgington, N. P., Goller, C. C., Grandgenett, N. F., Grant, B. J., Hauser, C., Johnson, K. A., Jones, C. J., Jue, N. K., Jungck, J. R., Kerby, J., Kleinschmit, A. J., Miller, K. G., … Robic, S. (2022). Making change sustainable: Network for integrating bioinformatics into life sciences education (niblse) meeting review. CourseSource, 9. https://doi.org/10.24918/cs.2022.10

Tractenberg, R. E., Lindvall, J. M., Attwood, T. K., & Via, A. (2019). The Mastery Rubric for Bioinformatics: A tool to support design and evaluation of career-spanning education and training. PLOS ONE, 14(11), e0225256. https://doi.org/10.1371/journal.pone.0225256

Umar, H. I., Siraj, B., Ajayi, A., Jimoh, T. O., & Chukwuemeka, P. O. (2021). Molecular docking studies of some selected gallic acid derivatives against five non-structural proteins of novel coronavirus. Journal of Genetic Engineering and Biotechnology, 19(1), 16. https://doi.org/10.1186/s43141-021-00120-7

Vardhan, S., & Sahoo, S. K. (2020). In silico ADMET and molecular docking study on searching potential inhibitors from limonoids and triterpenoids for COVID-19. Computers in Biology and Medicine, 124, 103936. https://doi.org/10.1016/j.compbiomed.2020.103936

Vinay, C. M., Udayamanoharan, S. K., Prabhu Basrur, N., Paul, B., & Rai, P. S. (2021). Current analytical technologies and bioinformatic resources for plant metabolomics data. Plant Biotechnology Reports, 15(5), 561–572. https://doi.org/10.1007/s11816-021-00703-3

Wilson Sayres, M. A., Hauser, C., Sierk, M., Robic, S., Rosenwald, A. G., Smith, T. M., Triplett, E. W., Williams, J. J., Dinsdale, E., Morgan, W. R., Burnette, J. M., Donovan, S. S., Drew, J. C., Elgin, S. C. R., Fowlks, E. R., Galindo-Gonzalez, S., Goodman, A. L., Grandgenett, N. F., Goller, C. C., … Pauley, M. A. (2018). Bioinformatics core competencies for undergraduate life sciences education. PLOS ONE, 13(6), e0196878. https://doi.org/10.1371/journal.pone.0196878

Xiao, Q., Mu, X., Liu, J., Li, B., Liu, H., Zhang, B., & Xiao, P. (2022). Plant metabolomics: A new strategy and tool for quality evaluation of Chinese medicinal materials. Chinese Medicine, 17(1), 45. https://doi.org/10.1186/s13020-022-00601-y

Yi, F., Li, L., Xu, L., Meng, H., Dong, Y., Liu, H., & Xiao, P. (2018). In silico approach in reveal traditional medicine plants pharmacological material basis. Chinese Medicine, 13(1), 33. https://doi.org/10.1186/s13020-018-0190-0

Zhang, X., Wu, F., Yang, N., Zhan, X., Liao, J., Mai, S., & Huang, Z. (2022). In silico methods for identification of potential therapeutic targets. Interdisciplinary Sciences: Computational Life Sciences, 14(2), 285–310. https://doi.org/10.1007/s12539-021-00491-y

Downloads

Published

2024-07-06

Issue

Section

ICT, Learning Media, and Learning Resources