Segmentasi Citra X-ray Paru dengan Deep Learning

Main Article Content

Muhammad Hussein
Agus Eko Minarno
Yufis Azhar

Abstract

Segmentasi gambar merupakan salah satu hal utama dalam kajian computer vision dan image processing. Salah satu contohnya adalah pemrosesan gambar x-ray paru untuk mengetahui penyakit-penyakit yang ada di dalam paru. U-Net merupakan salah satu model segmentasi yang telah dibuat untuk mempermudah seseorang membangun model untuk segmentasi gambar. U-net bisa digunakan pada gambar apapun. Dari keunggulannya itu peneliti mencoba menggunakan U-Net dikombinasikan dengan Inception, MobileNet dan EfficientNet untuk melakukan segmentasi pada gambar medis x-ray paru. Gambar di resize menjadi 512 x 512 pixel. Augmentasi yang dilakukan adalah zoom range, height shift, width shift dan horizontal flip. Epoch sebanyak 200 dan batch size sebesar 4. Skenario terbaik pada penelitian ini adalah dengan menggunakan U-net Efficientnetb0 dengan nilai dice 0.967 dan Jaccard 0.937.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
M. Hussein, A. E. Minarno, and Y. Azhar, “Segmentasi Citra X-ray Paru dengan Deep Learning”, JR, vol. 5, no. 1, Jan. 2024.
Section
Articles

References

Zaitoun NM, Aqel MJ. Survey on Image Segmentation Techniques. Procedia Comput Sci [Internet]. 2015;65(Iccmit):797–806. Available from: http://dx.doi.org/10.1016/j.procs.2015.09.027

Minaee S, Boykov YY, Porikli F, Plaza AJ, Kehtarnavaz N, Terzopoulos D. Image Segmentation Using Deep Learning: A Survey. IEEE Trans Pattern Anal Mach Intell. 2021;8828(c):1–20.

Ghosh S, Das N, Das I, Maulik U. Understanding deep learning techniques for image segmentation. ACM Comput Surv. 2019;52(4).

Chowdhary CL, Acharjya DP. Segmentation and feature extraction in medical imaging: a systematic review. Procedia Comput Sci. 2020;167:26–36.

Rahmawati E, Wibawanto H. Sistem Pakar Diagnosis Penyakit Paru-Paru Menggunakan Metode Forward Chaining. J Tek Elektro. 2016;8(2):64–9.

Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer- assisted intervention. 2015. p. 234–41.

Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. p. 3431–40.

Islam J, Zhang Y. Towards robust lung segmentation in chest radiographs with deep learning. arXiv Prepr arXiv181112638. 2018;

Candemir S, Jaeger S, Palaniappan K, Musco JP, Singh RK, Xue Z, et al. Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration. IEEE Trans Med Imaging. 2013;33(2):577–90

Stirenko S, Kochura Y, Alienin O, Rokovyi O, Gordienko Y, Gang P, et al. Chest X-Ray Analysis of Tuberculosis by Deep Learning with Segmentation and Augmentation. 2018 IEEE 38th Int Conf Electron Nanotechnology, ELNANO 2018 - Proc. 2018;422–8.

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. p. 1–9.

Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv Prepr arXiv170404861. 2017;

Tan M, Le Q V. Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv Prepr arXiv190511946. 2019;

Yakubovskiy P. Segmentation Models. GitHub repository. GitHub; 2019.

Chaurasia A, Culurciello E. Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). 2017. p. 1–4.

Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. p. 2881–90.

Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C. Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018. p. 4510–20.

Dice LR. Measures of the amount of ecologic association between species. Ecology. 1945;26(3):297–302.

Jaccard P. The distribution of the flora in the alpine zone. 1. New Phytol. 1912;11(2):37–50.

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 7 > >>