Implementasi Jaringan CNN-LSTM Untuk Deteksi Citra X-Ray Dada Covid-19

Main Article Content

Ratna Sari
Agus Eko Minarno
Yufis Azhar

Abstract

Wabah penyebaran Virus Covid-19 muncul desember 2019 di kota Wuhan, China. Virus tersebut mulai menggemparkan dunia karena begitu cepat menyebar ke seluruh belahan dunia. Virus Covid-19 dapat mampu ditulakan melewati batuk bahkan percikan saat berbicara. Penderita terkena Covid-19 dapat merasakan gangguan pernapasan dan parahnya lagi dapat menyebabkan kematian. Sampai sekarang virus tersebut banyak menyebabkan korban meninggal dunia. Maka dari itu dibutuhkan sistem deteksi otomatis untuk mendiagnosis cepat, agar mencegah penyebaran Covid-19. Penelitian ini mengusulkan sebuah kombinasi metode convolutional neural network (CNN) dan long short-term memory (LSTM) untuk mendeteksi Covid-19 dari citra x-ray dada. Dalam penelitian, CNN digunakan sebagai ekstraksi fitur yang dalam dan LSTM digunakan sebagai deteksi menggunakan fitur yang diekstraksi. Data yang digunakan se- banyak 3.829 citra x-ray dada yang terbagi menjadi 3 kelas yaitu, 1.143 citra x-ray Covid-19, 1.341 citra x-ray Normal dan citra x-ray 1.345 Viral Pneumonia. Dari hasil penelitian menggunakan metode CNN menunjukkan akurasi sebesar 98,7%, presisi 98%, recall 1.00%, spesifisitas 99,6%, dan f1-score 99%. Secara keselu- ruhan, metode CNN-LSTM dapat menjadi salah satu referensi untuk mempreksi penyakit lainnya.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
R. Sari, A. E. Minarno, and Y. Azhar, “Implementasi Jaringan CNN-LSTM Untuk Deteksi Citra X-Ray Dada Covid-19”, JR, vol. 4, no. 4, Feb. 2024.
Section
Articles

References

X. Wang et al., “A Weakly-Supervised Framework for COVID-19 Classification and Lesion

Localization from Chest CT,” IEEE Transactions on Medical Imaging, vol. 39, no. 8, pp. 2615–2625, 2020.

X. Ouyang et al., “Dual-Sampling Attention Network for Diagnosis of COVID-19 from Community Acquired Pneumonia,” IEEE Transactions on Medical Imaging, vol. 39, no. 8, pp. 2595–2605, 2020.

Y. Oh, S. Park, and J. C. Ye, “Deep Learning COVID-19 Features on CXR Using Limited Training Data Sets,” IEEE Transactions on Medical Imaging, vol. 39, no. 8, pp. 2688–2700, 2020.

O. Tutsoy, S. Colak, A. Polat, and K. Balikci, “A Novel Parametric Model for the Prediction and Analysis of the COVID-19 Casualties,” IEEE Access, vol. 8, no. November 2002, pp.

–193906, 2020.

Y. S. HARIYANI, S. HADIYOSO, and T. S. SIADARI, “Deteksi Penyakit Covid-19 Berdasarkan Citra X-Ray Menggunakan Deep Residual Network,” ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 8, no. 2, p. 443, 2020.

S. Tabik et al., “COVIDGR dataset and COVID-SDNet methodology for predicting COVID19 based on chest x-ray images,” arXiv, vol. 24, no. 12, pp. 3595–3605, 2020.

S. Hu et al., “Weakly Supervised Deep Learning for COVID-19 Infection Detection and Classification from CT Images,” IEEE Access, vol. 8, no. April, pp. 118869–118883, 2020.

R. Mostafiz, M. S. Uddin, N. Alam, M. Reza, and M. M. Rahman, “Covid-19 Detection in Chest X-ray Through Random Forest Classifier using a Hybridization of Deep CNN and

DWT Optimized Features,” Journal of King Saud University - Computer and Information Sciences, 2020.

B. Abraham and M. S. Nair, “Computer-aided detection of COVID-19 from X-ray images using multi-CNN and Bayesnet classifier,” Biocybernetics and Biomedical Engineering, vol.

, no. 4, pp. 1436–1445, 2020.

C. Ouchicha, O. Ammor, and M. Meknassi, “CVDNet: A novel deep learning architecture for detection of coronavirus (Covid-19) from chest x-ray images,” Chaos, Solitons and Fractals, vol. 140, 2020.

M. Z. Islam, M. M. Islam, and A. Asraf, “A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images,” Informatics in Medicine Unlocked, vol. 20, p. 100412, 2020.

A. M. Ismael and A. Şengür, “Deep learning approaches for COVID-19 detection based on chest X-ray images,” Expert Systems with Applications, vol. 164, p. 114054, 2021.

M. M. C. Otálora, “Yuliana,” Parque de los afectos. Jóvenes que cuentan, vol. 2, no. February, pp. 124–137, 2020.

Levani, Prastya, and Mawaddatunnadila, “Coronavirus Disease 2019 (COVID-19): Patogenesis, Manifestasi Klinis dan Pilihan Terapi,” Jurnal Kedokteran dan Kesehatan, vol. 17, no. 1, pp. 44–57, 2021.

M. G. Ragab, S. J. Abdulkadir, and N. Aziz, “Random Search One Dimensional CNN for Human Activity Recognition,” no. October, pp. 86–91, 2020.

J. Huang, B. Chen, B. Yao, and W. He, “ECG Arrhythmia Classification Using STFT-Based Spectrogram and Convolutional Neural Network,” IEEE Access, vol. 7, pp. 92871–92880, 2019.

T. Rahman, “Covid-19 Radiograpyh Database.” [Online]. Available: https://www.kaggle.com/tawsifurrahman/covid19-radiography-database.