Klasifikasi Aktifitas Pada Human Activity Recognition Dataset Menggunakan Logistic Regression
Main Article Content
Abstract
Smartphone dan smartwatch telah menjadi perangkat yang diperlukan dalam kehidupan sehari-hari selama beberapa tahun terakhir. Smartphone yang tersebar pada masyarakat dilengkapi dengan berbagai sensor seperti Accelerometer dan Gyroscope yang dapat mengumpulkan data mentah. Pada penelitian sebelumnya, sensor tersebut diletakkan di berbagai posisi pada bagian tubuh manusia. Data ini dapat digunakan untuk melakukan Human Activty Recognition (HAR). HAR telah banyak diterapkan pada kehidupan kita sehari-hari seperti mendeteksi kesehatan, perilaku manusia dan pelacakan lokasi tindak kesehatan. Dataset yang digunakan pada penelitian ini menggunakan data dari UCI Machine Learning dengan 30 orang subject. Penelitian ini mengusulkan metode Logistic Regression dengan penambahan Hyperparameter untuk mendapatkan hasil akurasi yang lebih baik. Hasil ini memiliki peningkatan performa Logistic Regression dalam klasifikasi Human Activity Recognition dengan meraih nilai akurasi sebesar 95,92% pada semua aktivitas.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
G. Yuan, Z. Wang, F. Meng, Q. Yan, and S. Xia, “An overview of human activity recognition based on smartphone,” Sensor Review, vol. 39, no. 2. Emerald Group Publishing Ltd., pp. 288–306, Mar. 07, 2019, doi: 10.1108/SR-11-2017-0245.
A. Subasi, A. Fllatah, K. Alzobidi, T. Brahimi, and A. Sarirete, “Smartphone-Based Human Activity Recognition Using Bagging and Boosting,” in Procedia Computer Science, Jan. 2019, vol. 163, pp. 54–61, doi: 10.1016/j.procs.2019.12.086.
A. E. Minarno, W. A. Kusuma, and H. Wibowo, “Performance Comparisson Activity Recognition using Logistic Regression and Support Vector Machine,” 2020 3rd Int. Conf. Intell. Auton. Syst. ICoIAS 2020, pp. 19–24, 2020, doi: 10.1109/ICoIAS49312.2020.9081858.
L. Chen and C. D. Nugent, Human Activity Recognition and Behaviour Analysis. Springer International Publishing, 2019.
Y. Xia, J. Zhang, Q. Ye, N. Cheng, Y. Lu, and D. Zhang, “Evaluation of deep convolutional neural networks for detection of freezing of gait in Parkinson’s disease patients,” Biomed. Signal Process. Control, vol. 46, pp. 221–230, Sep. 2018, doi: 10.1016/j.bspc.2018.07.015.
W. A. Kusuma and L. Husniah, “Skeletonization using thinning method for human motion system,” in 2015 International Seminar on Intelligent Technology and Its Applications, ISITIA 2015 - Proceeding, Aug. 2015, pp. 103–106, doi: 10.1109/ISITIA.2015.7219962.
N. Noury et al., “Fall detection - Principles and methods,” in Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, 2007, pp. 1663–1666, doi: 10.1109/IEMBS.2007.4352627.
M. H. C. Bleijlevens, J. P. M. Diederiks, M. R. C. Hendriks, J. C. M. Van Haastregt, H. F. J. M. Crebolder, and J. T. Van Eijk, “Relationship between location and activity in injurious falls: An exploratory study,” BMC Geriatr., vol. 10, no. 1, pp. 1–9, Jun. 2010, doi: 10.1186/1471-2318-10-40.
R. Zhu et al., “Efficient Human Activity Recognition Solving the Confusing Activities Via Deep Ensemble Learning,” IEEE Access, vol. 7, pp. 75490–75499, 2019, doi: 10.1109/ACCESS.2019.2922104.
D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A public domain dataset for human activity recognition using smartphones,” in ESANN 2013 proceedings, 21st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, 2013, pp. 437–442, Accessed: Aug. 15, 2020. [Online]. Available: http://www.i6doc.com/en/livre/?GCOI=28001100131010.
O. C. Kurban and T. Yildirim, “Daily motion recognition system by a triaxial accelerometer usable in different positions,” IEEE Sens. J., vol. 19, no. 17, pp. 7543–7552, 2019, doi: 10.1109/JSEN.2019.2915524.
S. C. Mukhopadhyay, “Wearable sensors for human activity monitoring: A review,” IEEE Sensors Journal, vol. 15, no. 3. Institute of Electrical and Electronics Engineers Inc., pp. 1321–1330, 2015, doi: 10.1109/JSEN.2014.2370945.
H. Wang, C. Ma, and L. Zhou, “A brief review of machine learning and its application,” Proc. - 2009 Int. Conf. Inf. Eng. Comput. Sci. ICIECS 2009, 2009, doi: 10.1109/ICIECS.2009.5362936.
A. D. Patel and J. H. Shah, “Performance analysis of supervised machine learning algorithms to recognize human activity in ambient assisted living environment,” Dec. 2019, doi: 10.1109/INDICON47234.2019.9030353.
A. E. Minarno, W. A. Kusuma, H. Wibowo, D. R. Akbi, and N. Jawas, “Single Triaxial Accelerometer-Gyroscope Classification for Human Activity Recognition,” 2020, doi: 10.1109/ICoICT49345.2020.9166329.
J. L. Reyes-Ortiz, L. Oneto, A. Samà, X. Parra, and D. Anguita, “Transition-Aware Human Activity Recognition Using Smartphones,” Neurocomputing, vol. 171, pp. 754–767, 2016, doi: 10.1016/j.neucom.2015.07.085.
L. Franceschi, M. Donini, P. Frasconi, and M. Pontil, “On hyperparameter optimization in learning systems,” 5th Int. Conf. Learn. Represent. ICLR 2017 - Work. Track Proc., no. 0123456789, 2019, doi: 10.1007/s41965-019-00023-0.
B. Wang and N. Z. Gong, “Stealing Hyperparameters in Machine Learning,” Proc. - IEEE Symp. Secur. Priv., vol. 2018-May, pp. 36–52, 2018, doi: 10.1109/SP.2018.00038.