Capacitated Location Allocation Problem of Solar Power Generation in Indonesia using Particle Swarm Optimization

Authors

  • Arya Wijna Astungkatara Departement of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Hamzah Fath Departement of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Oktaviana Putri Departement of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Anak Agung Istri Anindita Nanda Yana Departement of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Nur Mayke Eka Normasari Departement of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Andiny Trie Oktavia Departement of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Achmad Pratama Rifai Departement of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia

DOI:

https://doi.org/10.22219/JTIUMM.Vol25.No1.55-72

Keywords:

Capacitated Location Allocation Problem, Solar energy, Simulated Annealing, Large Neighborhood Search, Particle Swarm Optimization

Abstract

Indonesia has abundant potential for solar energy. The decrease in the cost of solar power generation components can bolster the development of solar power plants. Due to its geographical characteristics, it is essential to analyze the feasibility of using solar power plants as a primary renewable energy source in Indonesia, especially in Sumatra Island. One of the critical aspects of developing solar power plants is determining the suitable location of the power plant and allocating the electricity generated to the regions. Therefore, this study considers the Capacitated Location Allocation Problem (CLAP) to determine the optimal placement of solar power plants on Sumatra Island to minimize investment and transmission costs. To address the problem, we explore three metaheuristics, namely Particle Swarm Optimization (PSO), Simulated Annealing (SA), and Large Neighborhood Search (LNS). The results obtained by these metaheuristic methods show significant differences in cost, with SA providing the best solution with the lowest cost. The investment and transmission cost can be minimized by solving the CLAP to obtain optimal solar power plant placement while enhancing the region's resilience in implementing distributed generation.

Downloads

Download data is not yet available.

References

H. Hardianto, "Utilization of solar power plant in indonesia: A Review," International Journal of Environment, Engineering and Education, vol. 1, no. 3, pp. 1-8, 2019. https://doi.org/10.55151/ijeedu.v1i3.21.

H. Bayu and J. Windarta, "Tinjauan kebijakan dan regulasi pengembangan PLTS di Indonesia," Jurnal Energi Baru Dan Terbarukan, vol. 2, no. 3, pp. 123-132, 2021. https://doi.org/10.14710/jebt.2021.10043.

R. R. Al Hakim, "Model energi Indonesia, tinjauan potensi energi terbarukan untuk ketahanan energi di Indonesia: Sebuah ulasan," ANDASIH Jurnal Pengabdian Kepada Masyarakat, vol. 1, no. 1, 2020. https://doi.org/10.57084/andasih.v1i1.374.

G. Pepermans, J. Driesen, D. Haeseldonckx, R. Belmans, and W. D’haeseleer, "Distributed generation: definition, benefits and issues," Energy policy, vol. 33, no. 6, pp. 787-798, 2005. https://doi.org/10.1016/j.enpol.2003.10.004.

M. P. Ha, P. D. Huy, and V. K. Ramachandaramurthy, "A review of the optimal allocation of distributed generation: Objectives, constraints, methods, and algorithms," Renewable and Sustainable Energy Reviews, vol. 75, pp. 293-312, 2017. https://doi.org/10.1016/j.rser.2016.10.071.

M. J. Rider, J. M. López‐Lezama, J. Contreras, and A. Padilha‐Feltrin, "Bilevel approach for optimal location and contract pricing of distributed generation in radial distribution systems using mixed‐integer linear programming," IET generation, transmission & distribution, vol. 7, no. 7, pp. 724-734, 2013. https://doi.org/10.1049/iet-gtd.2012.0369.

D. Gautam and N. Mithulananthan, "Optimal DG placement in deregulated electricity market," Electric Power Systems Research, vol. 77, no. 12, pp. 1627-1636, 2007. https://doi.org/10.1016/j.epsr.2006.11.014.

D. Q. Hung, N. Mithulananthan, and K. Y. Lee, "Optimal placement of dispatchable and nondispatchable renewable DG units in distribution networks for minimizing energy loss," International Journal of Electrical Power & Energy Systems, vol. 55, pp. 179-186, 2014. https://doi.org/10.1016/j.ijepes.2013.09.007.

M. Gomez-Gonzalez, A. López, and F. Jurado, "Optimization of distributed generation systems using a new discrete PSO and OPF," Electric power systems research, vol. 84, no. 1, pp. 174-180, 2012. https://doi.org/10.1016/j.epsr.2011.11.016.

M. Gandomkar, M. Vakilian, and M. Ehsan, "A genetic–based tabu search algorithm for optimal DG allocation in distribution networks," Electric power components and systems, vol. 33, no. 12, pp. 1351-1362, 2005. https://doi.org/10.1080/15325000590964254.

M. Mohammadi and M. A. Nasab, "PSO based multiobjective approach for optimal sizing and placement of distributed generation," Research Journal of Applied Sciences, Engineering and Technology, vol. 3, no. 8, pp. 832-837, 2011.

M. Sedighizadeh, M. Fallahnejad, M. R. Alemi, M. Omidvaran, and D. Arzaghi-Haris, "Optimal placement of distributed generation using combination of PSO and clonal algorithm," 2010 2010: IEEE, pp. 1-6. https://doi.org/10.1109/PECON.2010.5697547.

A. P. Rifai, P. A. Kusumastuti, S. T. W. Mara, R. Norcahyo, and S. Z. M. Dawal, "Multi-operator hybrid genetic algorithm-simulated annealing for reentrant permutation flow-shop scheduling," ASEAN Engineering Journal, vol. 11, no. 3, pp. 109-126, 2021.

D. A. Kusumaningsih et al., "Simulated Annealing untuk Perancangan Tata Letak Industri Furniture dengan Model Single dan Double Row Layout," Jurnal Media Teknik dan Sistem Industri, vol. 6, no. 1, pp. 60-67, 2022. https://doi.org/10.35194/jmtsi.v6i1.1773.

A. B. Agista, A. P. Natuna, H. B. Wangsa, J. Fernanda, N. N. Akmal, and A. P. Rifai, "Perancangan Tata Letak Fasilitas UKM Kerajinan Kayu Dengan Metode Simulated Annealing," Journal of Industrial and Manufacture Engineering, vol. 5, no. 2, pp. 137-147, 2021. https://doi.org/10.31289/jime.v5i2.5673.

K. Wang, X. Li, L. Gao, P. Li, and S. M. Gupta, "A genetic simulated annealing algorithm for parallel partial disassembly line balancing problem," Applied Soft Computing, vol. 107, p. 107404, 2021. https://doi.org/10.1016/j.asoc.2021.107404.

Z. Wang, J. Tian, and K. Feng, "Optimal allocation of regional water resources based on simulated annealing particle swarm optimization algorithm," Energy Reports, vol. 8, pp. 9119-9126, 2022. https://doi.org/10.1016/j.egyr.2022.07.033.

A. M. Fathollahi-Fard, K. Govindan, M. Hajiaghaei-Keshteli, and A. Ahmadi, "A green home health care supply chain: New modified simulated annealing algorithms," Journal of Cleaner Production, vol. 240, p. 118200, 2019. https://doi.org/10.1016/j.jclepro.2019.118200.

A. P. Rifai, H.-T. Nguyen, and S. Z. M. Dawal, "Multi-objective adaptive large neighborhood search for distributed reentrant permutation flow shop scheduling," Applied Soft Computing, vol. 40, pp. 42-57, 2016. https://doi.org/10.1016/j.asoc.2015.11.034.

A. P. Rifai, S. T. W. Mara, and A. Sudiarso, "Multi-objective distributed reentrant permutation flow shop scheduling with sequence-dependent setup time," Expert Systems with Applications, vol. 183, p. 115339, 2021. https://doi.org/10.1016/j.eswa.2021.115339.

S. T. W. Mara, A. P. Rifai, and B. M. Sopha, "An adaptive large neighborhood search heuristic for the flying sidekick traveling salesman problem with multiple drops," Expert Systems with Applications, vol. 205, p. 117647, 2022. https://doi.org/10.1016/j.eswa.2022.117647.

A. P. Rifai, E. Sutoyo, S. T. W. Mara, and S. Z. M. Dawal, "Multiobjective Sequence-Dependent Job Sequencing and Tool Switching Problem," IEEE Systems Journal, vol. 17, no. 1, pp. 1395-1406, 2022. https://doi.org/10.1109/JSYST.2022.3213767.

Y. Adulyasak, J.-F. Cordeau, and R. Jans, "Optimization-based adaptive large neighborhood search for the production routing problem," Transportation science, vol. 48, no. 1, pp. 20-45, 2014. https://doi.org/10.1287/trsc.1120.0443.

N. Azi, M. Gendreau, and J.-Y. Potvin, "An adaptive large neighborhood search for a vehicle routing problem with multiple routes," Computers & Operations Research, vol. 41, pp. 167-173, 2014. https://doi.org/10.1016/j.cor.2013.08.016.

S. C. Ho and W. Y. Szeto, "A hybrid large neighborhood search for the static multi-vehicle bike-repositioning problem," Transportation Research Part B: Methodological, vol. 95, pp. 340-363, 2017. https://doi.org/10.1016/j.trb.2016.11.003.

E. Prescott‐Gagnon, G. Desaulniers, and L. M. Rousseau, "A branch‐and‐price‐based large neighborhood search algorithm for the vehicle routing problem with time windows," Networks: An International Journal, vol. 54, no. 4, pp. 190-204, 2009. https://doi.org/10.1002/net.20332.

D. Dumez, F. Lehuédé, and O. Péton, "A large neighborhood search approach to the vehicle routing problem with delivery options," Transportation Research Part B: Methodological, vol. 144, pp. 103-132, 2021. https://doi.org/10.1016/j.trb.2020.11.012.

P. Grangier, M. Gendreau, F. Lehuédé, and L.-M. Rousseau, "A matheuristic based on large neighborhood search for the vehicle routing problem with cross-docking," Computers & Operations Research, vol. 84, pp. 116-126, 2017. https://doi.org/10.1016/j.cor.2017.03.004.

F. Wang, H. Zhang, and A. Zhou, "A particle swarm optimization algorithm for mixed-variable optimization problems," Swarm and Evolutionary Computation, vol. 60, p. 100808, 2021. https://doi.org/10.1016/j.swevo.2020.100808.

X. Zhang, H. Liu, and L. Tu, "A modified particle swarm optimization for multimodal multi-objective optimization," Engineering Applications of Artificial Intelligence, vol. 95, p. 103905, 2020. https://doi.org/10.1016/j.engappai.2020.103905.

M. D. Phung and Q. P. Ha, "Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization," Applied Soft Computing, vol. 107, p. 107376, 2021. https://doi.org/10.1016/j.asoc.2021.107376.

L. Jena, S. Mishra, S. Nayak, P. Ranjan, and M. K. Mishra, "Variable optimization in cervical cancer data using particle swarm optimization," 2021 2021: Springer, pp. 147-153. https://doi.org/10.1007/978-981-15-8752-8_15.

D. Bertsimas and J. Tsitsiklis, "Simulated annealing," Statistical science, vol. 8, no. 1, pp. 10-15, 1993. https://doi.org/10.1214/ss/1177011077.

J. Tospornsampan, I. Kita, M. Ishii, and Y. Kitamura, "Split-pipe design of water distribution network using simulated annealing," International Journal of Civil and Environmental Engineering, vol. 1, no. 4, pp. 28-38, 2007.

P. Shaw, "Using constraint programming and local search methods to solve vehicle routing problems," 1998 1999: Springer, pp. 417-431. https://doi.org/10.1007/3-540-49481-2_30.

D. Pisinger and S. Ropke, "Large neighborhood search," Handbook of metaheuristics, pp. 99-127, 2019. https://doi.org/10.1007/978-3-319-91086-4_4.

H. Muhamad, C. A. Prasojo, N. A. Sugianto, L. Surtiningsih, and I. Cholissodin, "Optimasi naïve bayes classifier dengan menggunakan particle swarm optimization pada data iris," Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), p-ISSN, pp. 2355-7699, 2017. https://doi.org/10.25126/jtiik.201743251.

J. C. Bansal, "Particle swarm optimization," Evolutionary and swarm intelligence algorithms, pp. 11-23, 2019. https://doi.org/10.1007/978-3-319-91341-4_2.

J. Qin and L.-x. Miao, "Combined simulated annealing algorithm for logistics network design problem," 2009 2009: IEEE, pp. 1-4. https://doi.org/10.1109/IWISA.2009.5072784.

Downloads

Published

02/29/2024

How to Cite

Astungkatara, A. W., Fath, H., Putri, O., Yana, A. A. I. A. N., Normasari, N. M. E., Oktavia, A. T., & Rifai, A. P. (2024). Capacitated Location Allocation Problem of Solar Power Generation in Indonesia using Particle Swarm Optimization. Jurnal Teknik Industri, 25(1), 55–72. https://doi.org/10.22219/JTIUMM.Vol25.No1.55-72

Issue

Section

Article