Capacitated Location Allocation Problem of Solar Power Generation in Indonesia using Particle Swarm Optimization

Authors

  • Arya Wijna Astungkatara
  • Hamzah Fath
  • Oktaviana Putri
  • Anak Agung Istri Anindita Nanda Yana
  • Nur Mayke Eka Normasari
  • Andiny Trie Oktavia
  • Achmad Pratama Rifai Universitas Gadjah Mada

Keywords:

Capacitated Location Allocation Problem, Solar energy, Simulated Annealing, Large Neighborhood Search, Particle Swarm Optimization

Abstract

Indonesia has abundant potential of solar energy. The decrease on cost of solar power generation components can bolster the development of solar power plants. Analysing the feasibility of using solar power plants as a primary source of renewable energy in Indonesia, especially in Sumatra Island, is important due to its geographical characteristics. One of important aspects in developing solar power plants is determining the suitable location of power plant and the allocation of the electricity generated to the regions. Therefore, this study considers the Capacitated Location Allocation Problem (CLAP) to determine the optimal placement of solar power plants in Sumatra Island, with the objective of minimizing investment and transmission costs. To address the problem, we explore three metaheuristics, namely Particle Swarm Optimization (PSO), Simulated Annealing (SA) and Large Neighborhood Search (LNS). The results obtained by these metaheuristic methods show significant differences in cost, with SA providing the best solution with the lowest cost. By solving the CLAP to obtain optimal solar power plant placement, the investment and transmission cost can be minimized, while enhancing the region's resilience in the context of implementing distributed generation.

Downloads

Download data is not yet available.

References

Climate Watch. Historical Human-caused Greenhouse Gas Emissions. Climate Watch. 2020. https://www.climatewatchdata.org/ghg-emissions

Hardianto, H. Utilization of solar power plant in indonesia: A Review. International Journal of Environment, Engineering and Education. 2019; 1(3): 1-8.

Bayu, H., & Windarta, J. Tinjauan Kebijakan dan Regulasi Pengembangan PLTS di Indonesia. Jurnal Energi Baru Dan Terbarukan. 2021; 2(3): 123-132.

Al Hakim, R. R. Model energi Indonesia, tinjauan potensi energi terbarukan untuk ketahanan energi di Indonesia: Sebuah ulasan. ANDASIH Jurnal Pengabdian Kepada Masyarakat. 2020; 1(1).

Pepermans, G., Driesen, J., Haeseldonckx, D., Belmans, R., & D’haeseleer, W. Distributed Generation: Definition, Benefits and Issues. Energy Policy. 2005; 33 (6): 787–98.

HA, M. P., Huy, P. D., & Ramachandaramurthy, V. K. A Review of the Optimal Allocation of Distributed Generation: Objectives, Constraints, Methods, and Algorithms. Renewable and Sustainable Energy Reviews. 2017; 75: 293–312.

Rider, M. J., López‐Lezama, J. M., Contreras, J., & Padilha‐Feltrin, A. Bilevel Approach for Optimal Location and Contract Pricing of Distributed Generation in Radial Distribution Systems Using Mixed‐integer Linear Programming. IET Generation, Transmission & Distribution. 2013; 7(7): 724–34.

Gautam, D., & Nadarajah M. Optimal DG Placement in Deregulated Electricity Market. Electric Power Systems Research. 2007; 77 (12): 1627–36.

Hung, D.Q., Mithulananthan, N., & Kwang Y. L. Optimal Placement of Dispatchable and Nondispatchable Renewable DG Units in Distribution Networks for Minimizing Energy Loss. International Journal of Electrical Power & Energy Systems. 2014; 55: 179–86.

Gomez-Gonzalez, M., López, A., & Jurado, F. Optimization of Distributed Generation Systems Using a New Discrete PSO and OPF. Electric Power Systems Research. 2012; 84 (1): 174–80.

Gandomkar, M., Vakilian, M., & Ehsan, M. J. E. P. C. A Genetic–Based Tabu Search Algorithm for Optimal DG Allocation in Distribution Networks. Electric Power Components and Systems. 2005; 33 (12): 1351–62.

Mohammadi, M., & Nasab, M. A. PSO Based Multiobjective Approach for Optimal Sizing and Placement of Distributed Generation. Research Journal of Applied Sciences, Engineering and Technology. 2011; 2(8): 832–837.

Sedighizadeh, M., Fallahnejad, M., Alemi, M. R., Omidvaran, M., & Arzaghi-Haris, D. Optimal placement of distributed generation using combination of PSO and clonal algorithm. In 2010 IEEE International Conference on Power and Energy. 2010; 1-6.

Rifai, A. P., Kusumastuti, P. A., Mara, S. T. W., Norcahyo, R., & Dawal, S. Z. Multi-operator hybrid genetic algorithm-simulated annealing for reentrant permutation flow-shop scheduling. ASEAN Engineering Journal. 2021; 11(3): 109-126.

Kusumaningsih, D. A., Azim, A. F., Albab, D. A. I. U., Hans, F. R., Korin, F., Pohan, R. N. A. M., ... & Rifai, A. P. Simulated Annealing untuk Perancangan Tata Letak Industri Furniture dengan Model Single dan Double Row Layout. Jurnal Media Teknik Dan Sistem Industri. 2022: 6(1): 60-67.

Agista, A. B., Natuna, A. P., Wangsa, H. B., Fernanda, J., Akmal, N. N., & Rifai, A. P. Perancangan Tata Letak Fasilitas UKM Kerajinan Kayu Dengan Metode Simulated Annealing. Journal of Industrial and Manufacture Engineering. 2021; 5(2): 137-147.

Wang, K., Li, X., Gao, L., Li, P., & Gupta, S. M. A genetic simulated annealing algorithm for parallel partial disassembly line balancing problem. Applied Soft Computing. 2021; 107: 107404.

Wang, Z., Tian, J., & Feng, K. Optimal allocation of regional water resources based on simulated annealing particle swarm optimization algorithm. Energy Reports. 2022; 8: 9119-9126.

Fathollahi-Fard, A. M., Govindan, K., Hajiaghaei-Keshteli, M., & Ahmadi, A. A green home health care supply chain: New modified simulated annealing algorithms. Journal of Cleaner Production. 2019; 240: 118200.

Rifai, A. P., Nguyen, H. T., & Dawal, S. Z. M. Multi-objective adaptive large neighborhood search for distributed reentrant permutation flow shop scheduling. Applied Soft Computing. 2016; 40: 42-57.

Rifai, A. P., Mara, S. T. W., & Sudiarso, A. Multi-objective distributed reentrant permutation flow shop scheduling with sequence-dependent setup time. Expert Systems with Applications. 2021; 183: 115339.

Mara, S. T. W., Rifai, A. P., & Sopha, B. M. An adaptive large neighborhood search heuristic for the flying sidekick traveling salesman problem with multiple drops. Expert Systems with Applications. 2022; 205: 117647.

Rifai, A. P., Sutoyo, E., Mara, S. T. W., & Dawal, S. Z. M. Multiobjective Sequence-Dependent Job Sequencing and Tool Switching Problem. IEEE Systems Journal. 2022; 17(1): 1395-1406.

Adulyasak, Y., Cordeau, J. F., & Jans, R. Optimization-based adaptive large neighborhood search for the production routing problem. Transportation Science. 2014; 48(1): 20-45.

Azi, N., Gendreau, M., & Potvin, J. Y. An adaptive large neighborhood search for a vehicle routing problem with multiple routes. Computers & Operations Research. 2014; 41: 167-173.

Ho, S. C., & Szeto, W. Y. A hybrid large neighborhood search for the static multi-vehicle bike-repositioning problem. Transportation Research Part B: Methodological. 2017; 95, 340-363.

Prescott‐Gagnon, E., Desaulniers, G., & Rousseau, L. M. A branch‐and‐price‐based large neighborhood search algorithm for the vehicle routing problem with time windows. Networks: An International Journal. 2009; 54(4): 190-204.

Dumez, D., Lehuédé, F., & Péton, O. A large neighborhood search approach to the vehicle routing problem with delivery options. Transportation Research Part B: Methodological. 2021; 144: 103-132.

Grangier, P., Gendreau, M., Lehuédé, F., & Rousseau, L. M. A matheuristic based on large neighborhood search for the vehicle routing problem with cross-docking. Computers & Operations Research. 2017; 84: 116-126.

Wang, F., Zhang, H., & Zhou, A. A particle swarm optimization algorithm for mixed-variable optimization problems. Swarm and Evolutionary Computation. 2021; 60: 100808.

Zhang, X., Liu, H., & Tu, L. A modified particle swarm optimization for multimodal multi-objective optimization. Engineering Applications of Artificial Intelligence. 2020; 95: 103905.

Phung, M. D., & Ha, Q. P. Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization. Applied Soft Computing. 2021; 107: 107376.

Jena, L., Mishra, S., Nayak, S., Ranjan, P., & Mishra, M. K. Variable optimization in cervical cancer data using particle swarm optimization. In Advances in Electronics, Communication and Computing: Select Proceedings of ETAEERE. 2020; 147-153.

Bertsimas, D., & Tsitsiklis, J. Simulated Annealing. Statistical Science. 1993; 8 (1): 10-15.

Tospornsampan, J., Ishii, M., Kita, I., & Kitamura, Y. Split-Pipe Design of Water Distribution. World Academy of Science, Engineering and Technology. 2007; 28.

Shaw, P. Using constraint programming and local search methods to solve vehicle routing problems. In International conference on principles and practice of constraint programming. 1998; 417-431

Pisinger, D., & Ropke, S. Large Neighborhood Search. Handbook of Metaheuristic Vol 146 of International Series in Operations Research and Management Science. 2010; 99-419.

Muhamad, H., Prasojo, C. A., Sugianto, N. A., Surtiningsih, L., & Cholissodin, I. Optimasi Naïve Bayes Classifier Dengan Menggunakan Particle Swarm Optimization Pada Data Iris. J. Teknol. Inf. dan Ilmu Komput. 2017; 4(3): 180.

Bansal, J. C. Particle swarm optimization. In Studies in Computational Intelligence. Springer Verlag. 2019; 779: 11–23.

Qin, J., & Miao, L. X. Combined simulated annealing algorithm for logistics network design problem. In 2009 International Workshop on Intelligent Systems and Applications. 2009; 1-4.

Published

02/29/2024

How to Cite

Astungkatara, A. W., Fath, H., Putri, O., Yana, A. A. I. A. N., Normasari, N. M. E., Oktavia, A. T., & Rifai, A. P. (2024). Capacitated Location Allocation Problem of Solar Power Generation in Indonesia using Particle Swarm Optimization. Jurnal Teknik Industri, 25(1). Retrieved from https://ejournal.umm.ac.id/index.php/industri/article/view/28212

Issue

Section

Article